

# TP 10 – Régime sinusoïdal forcé du circuit RLC

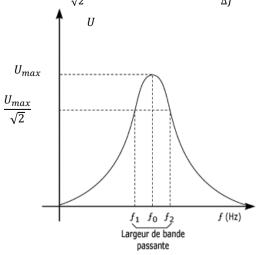
OBJECTIFS: Etudier un phénomène de résonance dans un circuit en régime sinusoïdal forcé

## Ce qu'il faut savoir et savoir faire

- → Mesurer une fréquence
- → Mesurer un déphasage
- → Observer et mesurer une tension à l'oscilloscope
- → Observer un courant à l'oscilloscope
- → Elaborer un signal électrique à l'aide d'un GBF
- → Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance
- → Mettre en évidence le rôle du facteur de qualité pour l'étude de la résonance en tension ou élongation
- → Relier l'acuité de résonance au facteur de qualité

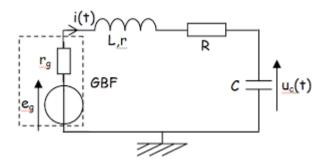
#### **Matériel**:

- GBF de résistance interne  $r_g = 50 \Omega$
- Boîte de résistances à décade
- Boîte de capacités à décade
- Bobine (L,r)
- Oscilloscope numérique ou système d'acquisition


Fiches utiles: FT7, FT8, FT9

#### Rappel du cours

#### Caractéristiques du circuit RLC série :


Pulsation propre :  $\omega_0 = \sqrt{\frac{1}{LC}}$  Facteur de qualité :  $Q = \frac{L\omega_0}{R} = \frac{1}{R}\sqrt{\frac{L}{C}}$ 

On définit la bande passante  $\Delta f = f_2 - f_1$ , où  $f_1$  et  $f_2$  sont les deux fréquences correspondant à l'amplitude U de la tension aux bornes de R telle que  $U = \frac{U_{max}}{\sqrt{2}}$ . On montre que  $Q = \frac{f_0}{\Delta f}$  (acuité de résonance).



Travaux Pratiques 10: Régime sinusoïdal forcé du circuit RLC

On étudie le montage suivant :



### I. Etude préliminaire

#### Faire l'exercice 4 du TD 7.

- **Q1.** Calculer la fréquence de résonance en intensité du circuit étudié C = 10 nF.
- **Q2.** Calculer le facteur de qualité théorique pour R =  $500 \Omega$  puis pour R =  $10 \text{ k}\Omega$  et C = 10 nF.
- **Q3.** Montrer que Q est égal à l'acuité de résonance.

#### II. Etude aux bornes de R : résonance en intensité

#### 1. Observation du phénomène

- $\rightarrow$  Réaliser un montage permettant d'observer les tensions aux bornes du GBF et de la résistance à l'oscilloscope pour R = 500  $\Omega$ .
- $\rightarrow$  Faire varier la fréquence f de la tension d'entrée. Observer la résonance en courant et mesurer la fréquence de résonnance  $f_r$ . Comparer à la valeur théorique  $f_0$ .
- → Faire varier R. Commenter.
- → Observer l'évolution du déphasage quand f augmente.

### 2. Influence de la résistance sur le phénomène

- $\rightarrow$  Mesurer les fréquences  $f_1$  et  $f_2$  délimitant la bande passante.
- → En déduire la valeur du facteur de qualité. Comparer à la valeur théorique.
- $\rightarrow$  Refaire la même chose pour R = 10 kΩ.

## III. Etude aux bornes du condensateur : phénomène de surtension

## 1. Observation du phénomène

- $\rightarrow$  Réaliser un montage permettant d'observer les tensions aux bornes du GBF et du condensateur à l'oscilloscope pour R = 1 k $\Omega$ .
- → Faire varier la fréquence f de la tension d'entrée. Mesurer la fréquence de résonance f<sub>r</sub>.
- → Mesurer le déphasage à la résonance.

## 2. Influence de la résistance sur le phénomène

- $\rightarrow$  Remplacer la résistance par une résistance R = 10 kΩ.
- → Faire varier la fréquence de la tension d'entrée. Observer l'évolution de la tension aux bornes de C.