
Exercice supplémentaire 1 : Sonde atténuatrice pour oscilloscope  
  ☆ 

 

 
✓ Impédance équivalente 

 

L’entrée d’un oscilloscope est généralement modélisée par un dipôle constitué d’une résistance R de 1M 
en parallèle avec un condensateur C ayant une capacité de quelques dizaines de pF, variable d’un 
oscilloscope à un autre. Pour diminuer une tension alternative sinusoïdale on ajoute parfois en série avec 
l’entrée de mesure une sonde atténuatrice constituée d’une résistance Rsonde de 9 M en parallèle avc un 
condensateur Csonde, réglable. 

 

1) Exprimer voscillo en fonction de vmesure. Mettre sous la forme 
𝑣𝑜𝑠𝑐𝑖𝑙𝑙𝑜

𝑣𝑚𝑒𝑠𝑢𝑟𝑒
=

1

1+
𝑍1

𝑍2

 où Z1 et Z2 sont 2 impédances 

à définir. 

2) Quelle valeur faut-il donner à Csonde pour avoir une atténuation d’un facteur 10 quelle que soit la 

fréquence du signal à mesurer (on prendra C = 30 pF) ?  

 

 

 

Exercice supplémentaire 2 : Résonance dans un RLC  
  ☆ 

 

 
✓ Résonance 

 

Cas 1 : On étudie un dipôle RLC série alimenté par une tension sinusoïdale e(t) =E cos(t), de pulsation 

ω réglable. Un courant i(t) = I cos (t-) circule dans ce groupement. 

1) Exprimer l’impédance complexe ZS de ce dipôle. Mettre sous la forme 𝑍𝑠 = 𝑅 (1 + 𝑗𝑄 (
𝜔

𝜔0
−

𝜔0

𝜔
)) en 

précisant les expressions de Q et 0. 
2) En déduire les expressions du module ZS et du retard de phase φ de ce circuit. 
3) Tracer l’allure du graphe ZS/R en fonction de la pulsation réduite x =. 
4) Pour quelle pulsation l’amplitude du courant est-elle maximale ? Quelle est l’expression de Imax, 

l’amplitude maximale du courant ? Quel est le phénomène mis en jeu ?  
 
Cas 2 : On considère maintenant un dipôle où la bobine L et la résistance R sont montées en parallèle sur 
le condensateur C. Ce dipôle est alimenté par la tension e(t) =E cos (t), de pulsation ω réglable.  
 

1) Exprimer l’impédance complexe ZP de ce dipôle sous la forme : 𝑍𝑝 =
𝑅

𝑗𝐶𝜔𝑍𝑠
(1 + 𝑗

𝑄𝜔

𝜔0
). 

2) Montrer que, lorsque Q >> 1 et que la pulsation ω n’est pas trop faible ( 1
0





Q ), 

S

P
Z

RQ
Z

22

 . 

3) Que vaut alors ZP pour la pulsation ω0 ? Comment se comporte alors le circuit ? 
4) On suppose ω = ω0. Déterminer l’expression des intensités iL et iC qui traversent respectivement L et 

C, en fonction de R, Q, ω, du temps t et de E. Commenter le cas où Q>>1. 



Exercice supplémentaire 3 : Circuit RL  
  ☆ 

 

 
✓ Régime sinusoïdal forcé 

 
On considère le circuit suivant alimenté par une tension d’entrée de pulsation  telle que e(t) = em cos 

(t). La tension de sortie est de la forme : s(t) = sm cos(ωt + ). 

La résistance R vaut 4,0 k 

 

1) Représenter les branchements de l'oscilloscope permettant les mesures de e(t) et de s(t).  

2) En utilisant la notation complexe, exprimer s en fonction de la tension complexe e, R, L et . 

3) Montrer que l’on peut écrire 𝑠 =
1

2

𝑒

1−𝑗
1

𝑥

 avec 𝑥 =
𝜔

𝜔0
 . Préciser l’expression de ω0 en fonction de R et 

L. 
4) Le graphe des tensions e(t) et s(t) est donné ci-après. 

a) Affecter les courbes à leur tension correspondante. Justifier. 

b) Déterminer graphiquement la fréquence f, em, sm en expliquant votre démarche. 

c) D'après le graphique, la courbe s(t) est-elle en avance ou en retard sur e(t) ? Déterminer 
graphiquement  en précisant son unité et en commentant son signe. Expliquer votre méthode. 

d) Déduire des valeurs de em et de sm la valeur de x pour la courbe ci-dessous. En déduire la valeur 
de L. 

e) A partir de l'expression de s de la question 3 et de la valeur de x trouvée à la question précédente, 
calculer la valeur théorique th du déphasage de s(t) par rapport à e(t). Comparer avec la valeur 
mesurée sur le graphique.  

 

5) Retrouver à partir de la relation établie à la question 2 (ou 3) l'équation différentielle reliant s(t) et 
e(t). 

 

 

Exercice supplémentaire 4 : Alimentation d’un électroaimant de levage  
  ☆ 

 

 

Un électroaimant de levage est un dispositif industriel permettant de soulever des 

pièces métalliques à partir de champs magnétiques intenses. On étudie un tel appareil 



en le modélisant électriquement par une bobine d’inductance L = 1,25 H dont les 

spires ont une résistance interne R = 1 Ω.  

Cette bobine est traversée par un courant i(t) sinusoïdal de fréquence f = 50 Hz dont l’amplitude Im = 30 

A est imposée pour le bon fonctionnement du dispositif. 

Ce courant étant de forte puissance, les pertes par effet Joule dans les câbles d’alimentation de 

l’électroaimant sont non négligeables. Pour les diminuer, une méthode usuelle consiste à installer un 

condensateur de capacité C en parallèle de l’électroaimant. On note alors i′(t) l’intensité du courant dans 

les câbles d’alimentation du dispositif, dont l’amplitude I′m est inférieure à l’amplitude Im du courant qui 

traverse l’électroaimant. 

 

1) Exprimer le courant complexe i’ en fonction du courant complexe i. 

2) En déduire l’amplitude I’m du courant i’(t). 

3) Calculer la valeur de la capacité C du condensateur pour minimiser l’amplitude I′m pour une valeur 

de Im fixée. On pourra pour cela étudier la dérivé de I′m
2 par rapport à C. 

4) Calculer numériquement la valeur de I′m dans la configuration optimale.  

 

 

Exercice supplémentaire 5 : Impédance d’un quartz  
  ☆ 

 

 
 
Le quartz est une forme particulière de cristal de silice. Il présente des propriétés physiques très 
intéressantes : la piézo-électricité. Quand on comprime un morceau de quartz dans une direction 
particulière, une tension apparaît aux bornes du cristal (c’est l’effet piézo-électrique). 
Réciproquement, quand on applique une tension aux bornes d’un quartz, ce dernier se déforme 
proportionnellement à la tension appliquée (c’est l’effet piézo-électrique inverse). Ainsi, le quartz est 
très intéressant pour l’électronique car on parvient à réaliser des circuits oscillants, à base de 
résonateur à quartz, très stables dans le temps.  
 
A. Etude du modèle électrique d’un quartz.  
 
Si on néglige les pertes dans le quartz, le schéma électrique simplifié d’un quartz est donné sur la 
figure ci-contre. 

 
Pour les applications numériques, on prendra L = 500 mH, C

S 
= 0,08 

pF et C
P 

= 8 pF.  

On se placera toujours en régime sinusoïdal forcé (les grandeurs 
dépendront de la pulsation ω ).  
 
1) Exprimer l’impédance complexe du quartz, vue entre les bornes 

A et B.  On l’écrira sous la forme : 
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−= où j est le nombre imaginaire pur tel que j2=-1. On donnera, en fonction de 

L, CP
 
et C

S 
les expressions de  r

2 et a
2. 

 

2) Montrer que r
2 < a

2. 
 

On pourra admettre les résultats de cette question pour poursuivre la résolution du problème.  
 

3) Donner les valeurs numériques des fréquences f
a 

et f
r 

correspondant respectivement aux 

pulsations ωa et ωr.  
4) Etudier le comportement inductif ou capacitif du quartz en fonction de la fréquence. On rappelle 

qu’un dipôle a un comportement inductif (respectivement capacitif) si la partie imaginaire de son 
impédance est positive (respectivement négative).  

5) Etudier ZAB pour les pulsations ωaet ωr. Tracer l’allure de ZAB, module de l’impédance complexe 
du quartz, en fonction de la fréquence. 
 

B.  Etude expérimentale de la résonance d’un quartz  
 
On veut tracer expérimentalement la courbe donnant l’impédance du quartz en fonction de la 
fréquence d’excitation. On dispose d’un générateur basses fréquences pouvant délivrer une tension 
sinusoïdale d’amplitude réglable. Le GBF possède une résistance interne Rg. On dispose d’une 
résistance Rv variable, d’un quartz et d’un oscilloscope.  
 
On réalise alors le montage de la figure ci-contre.  

 

1) Calculer le rapport de la tension de sortie Vs à celle d’entrée VE : H = Vs / VE en fonction de Rv 
et de ZAB.  

2) On choisit, pour chaque fréquence, la résistance Rv de telle façon que le module de H, H =1/2. 

Que vaut alors le module de l’impédance du quartz en fonction de Rv?  
3) Quelle est la fréquence de résonance en courant du circuit étudié ? 
4) Autour du pic de résonance d’intensité situé vers 796 kHz, on mesure une bande passante de 50 

Hz. Quelle est la valeur numérique du facteur de qualité Q du quartz défini comme le rapport 
de la fréquence de résonance par la largeur de la bande passante ? Commenter cette valeur.  

En réalité le modèle électrique d’un quartz possède également une résistance. En supposant que 

le facteur de qualité soit donné par la relation Q = Lω0/R (ω0 étant la pulsation de résonance), 

estimer la valeur de la résistance R du quartz 

 

 

 


