TP6 2025-2026

TP6: Tri rapide en place

Dans ce sujet, pour 7" un tableau et a, b des indices, la notation T'[a..b] indique le sous-tableau
composé des cases T'[a], T[a+1], ..., T[b]. Par convention, si a > b, T'[a..b] représente un tableau
vide, constitué d’aucune case. De méme, la notation 7']a..b[indique le sous-tableau composé des
cases T'la+1],...,T[b—1]. On pourra écrire T'[a..b] et T']a..b] pour exclure 'une des extrémités
seulement.

Etude théorique

L’algorithme de tri rapide vu en cours renvoie une copie triée de son entrée, et n’est donc
pas un algorithme en place : il nécessite de réserver de l’espace additionnel. On se propose
d’implémenter une version du tri rapide qui travaille directement dans le tableau d’entrée. Le
coeur de cet algorithme est la procédure de partition :

Algorithme 1 : partition(7,n)
Entrée(s) : T tableau de taille n
Sortie(s) : T est modifié, 'ancienne valeur de T'[0] est maintenant a un indice j tel
que Vo € T[0..j[,x < T[j] et Vo € T]j.n[,x > T[j]

La procédure de partition permet donc de couper un tableau en deux selon le pivot T'[0] : les
éléments inférieurs ou égaux a gauche, les éléments strictement supérieurs a droite. Tout cela
est fait en place, sans réserver de mémoire additionnelle.

Par exemple, si T' = [5,2,7,8,1,5,9,8,6,2], apres avoir appelé Partition(7"), on a séparé
T en utilisant T'[0] = 5 comme pivot. Apres I'exécution de 'algorithme, T" peut donc contenir
2,1,5,2,5,7,8,9,8,6].

L’ordre au sein de chaque partie est arbitraire et dépend de 'implémentation de 1’algorithme.
Dans I'exemple précédent, l'ordre choisi est celui d’apparition dans le tableau 7" avant la par-
tition.

Implémentons 'algorithme de partition. Le principe est de maintenir deux zones dans le
tableau : une qui contient les éléments < T'[0] et qui grandit depuis le bord gauche du tableau,
et une qui contient les éléments > T'[0] et qui grandit depuis le bord droit.

On pourra donc utiliser deux variables i, s, avec ¢ = 1,s = n — 1 initialement, qui marquent
respectivement la fin de la zone de gauche et le début de la zone de droite :

D <p ? >

0 1 S n—1

Une fois que 'on a rangé correctement toutes les cases, on déplace T'[0] au bon endroit.

Informatique - MP2I - Lycée Pierre de Fermat 1

[IENEGCR N

TP6 2025-2026

Q1. Traduire le role des variables ¢ et s en un invariant. Réfléchissez bien a s’il faut inclure
ou non i et s dans les zones qu’ils délimitent.

Q2. Proposer un algorithme en pseudo-code pour la partition, en suivant les indications
précédentes et en respectant 'invariant trouvé a la question précédente. Complexité at-
tendue : O(n).

Q3. Adapter I'algorithme pour qu’il puisse partitionner une partie du tableau, comprise entre
deux indices a et b, et pour qu’il renvoie 'indice du pivot apres la partition :

Algorithme 2 : partition_entre(T,n,a,b)

Entrée(s) : T tableau de taille n, a,b € [0,n — 1] avec a < b
Sortie(s) : j € [a, b] tel que 'ancienne valeur de T'[a] est maintenant a l'indice j, et
Vo € Tla..j,x < T[j] et Vo € T]j..b],x > T[j]

Q4. Ecrire un algorithme récursif tri_rapide_entre permettant de trier une partie de 7" en
place (c’est a dire sans allouer de mémoire additionnelle) :

Algorithme 3 : tri rapide entre(7,n,a,b)

Entrée(s) : T tableau de taille n, a,b € [0,n — 1] avec a < b
Sortie(s) : T est modifié de sorte que T[a..b] est trié.

Q5. En déduire un algorithme tri rapide(T, n) permettant de trier un tableau selon 1’al-
gorithme de tri rapide.

Notons que méme si 'on dit que ce tri est en place, il ne va pas s’exécuter en utilisant un
espace mémoire O(1). En effet, les appels récursifs font grandir la pile d’appel.

Q6. En fonction de n, quelle serait la taille maximale atteinte par la pile d’appel au cours du
tri d’'un tableau de taille n?

Implémentation en C et chronométrage

Q7. Implémenter un tri par sélection ou par insertion, et le tester en utilisant une fonction
’bool est_trie(int* T, int n) \ déterminant si un tableau est trié dans 'ordre croissant.

Q8. Implémenter le tri rapide en place, et le tester.

Nous allons comparer les performances du tri rapide avec celles du tri quadratique choisi.
Pour cela, nous devons mesurer leur temps d’exécution, mais la fonction ne permet de
faire des mesures qu’a la seconde pres.

La librairie contient la fonction [clock_t clock() | qui permet de faire des mesures
plus précises. Cette fonction renvoie le temps écoulé depuis le lancement du programme, dans
une unité arbitraire appelé les clocks.[] Un clock vaut environ un millionieme de seconde. Le
nombre exact de clocks par seconde est accessible avec la macro | CLOCKS_PER_SEC |, ce qui permet
de mesurer des durées comme suit :

clock_t debut = clock();

/* Code & chronométrer */

clock_t fin = clock();

float duree = (float) (fin - debut) / CLOCKS_PER_SEC;

Le | (float) | sert a forcer une division flottante, afin que le résultat puisse étre un nombre a
virgule.

1. Si vous avez des notions d’architecture des ordinateurs : attention, un clock ne correspond pas a un tic
d’horloge du CPU!

Informatique - MP2I - Lycée Pierre de Fermat 2

—_

O © 00O Uk W

TP6 2025-2026

Q9. Ecrire une fonction ‘float test_tri_rapide(int n) | qui génere 20 tableaux aléatoires de
taille n, les trie avec le tri rapide, chronometre le tout, et renvoie le temps moyen écoulé
par tableau, en secondes (on négligera le temps pris par la génération des tableaux).

Q1o0. Ecrire une fonction analogue pour le tri quadratique choisi précédemment.

Q11. Mesurer le temps moyen d’exécution du tri rapide sur n € [100,200,300,...4000] et
stocker les valeurs mesurées dans un fichier.

Q12. Faire de méme avec le tri quadratique.

% Compétences numériques * : Comparaison des performances

Tracons les courbes des temps d’exécution obtenus aux questions précédentes, afin de com-
parer nos différents algorithmes. Le code python suivant permet de lire dans un fichier et d’en
extraire une liste de nombres :

ouverture en mode lecture

f = open(nom_fichier, "r"

chaine de caractére avec tout le contenu du fichier
contenu = f.read()

sépare en sous-chaines selon les espaces et les '\n'
nombres = contenu.split ()

transforme chaque sous-chaine en flottant

nombres = list(map(float, nombres))

fermeture du fichier

f.close ()

Par exemple, si le fichier contient :

0.21
1.37
52.12

alors apres avoir lancé le code python ci-dessus, sera la liste [0.21,1.37, 52.12].
Q13. Avec , tracer les courbes des temps d’exécution du tri rapide, et du tri qua-

dratique choisi.

Q14. Vérifier graphiquement que les complexités sont en O(nlogn) et O(n?).

Pour aller plus loin : choix du pivot

Plutot que de choisir le pivot aléatoirement, ou de toujours prendre le premier élément, on
peut choisir un pivot qui a de bonnes chances de couper le tableau en deux parties équitables.
Une méthode simple est de regarder trois éléments du tableau : le premier, le dernier, et celui du
milieu. On prend alors la médiane des trois, ce qui réduit en pratique les chances de mauvais
pivot.

Q15. Implémenter le choix de pivot des trois médianes, et comparer avec le tri rapide basique.

Informatique - MP2I - Lycée Pierre de Fermat 3

TP6 2025-2026

Pour aller encore plus loin : Tri hybride

Le tri par insertion en général plus lent que le tri rapide, mais nous avons vu en cours qu’il est

adaptatif : il peut s’exécuter relativement vite sur des tableaux partiellement triés (et méme
en O(n) pour un tableau déja trié).
Une amélioration du tri rapide consiste alors a arréter les appels récursifs des que 1'on atteint
des sous-tableaux d’une taille inférieure a un seuil K. On obtient alors un tableau qui n’est pas
trié, mais qui est divisé en zones de tailles < K, de telle sorte que les zones sont triées entre
elles. Par exemple pour K = 3, apres avoir lancé le tri rapide partiel proposé ci-dessus sur le
tableau suivant :

6,2,3,1,8,4,9,7,2,8,3,5]

on pourrait obtenir le tableau suivant :

2,1,2, 3,4,3, 7.6,5, 8,8,9)

Chaque bloc individuel de 3 éléments n’est pas trié, mais les blocs sont dans le bon ordre
global : chaque élément du premier bloc est inférieur a chaque élément du deuxieme bloc, et
ainsi de suite.

Q16. A la main, appliquer un tri par insertion sur le tableau obtenu ci-dessus apres le tri rapide
partiel. Combien d’échanges ont été nécessaires ?

Q17. De maniere général, en fonction de K et n, quel est le cotit du tri par insertion sur un
tableau divisé en blocs de taille K placés dans le bon ordre (mais ou les éléments au sein
de chaque bloc ne sont pas forcément triés) ?

Le tri hybride rapide-insertion consiste donc a appliquer le tri rapide partiel jusqu’a avoir
partitionné le tableau en blocs d’au plus K éléments, puis a appliquer un tri par insertion sur
le tableau obtenu.

Q18. Implémenter le tri hybride, et le tester avec K = 100, en le comparant au tri rapide pour
des tableaux de tailles 10000, 20000, . .., 100000.

Q19. Tester d’autres valeurs de K et les comparer.

Informatique - MP2I - Lycée Pierre de Fermat 4

