
TP6 2025-2026

TP6: Tri rapide en place

Dans ce sujet, pour T un tableau et a, b des indices, la notation T [a..b] indique le sous-tableau
composé des cases T [a], T [a+1], . . . , T [b]. Par convention, si a > b, T [a..b] représente un tableau
vide, constitué d’aucune case. De même, la notation T]a..b[indique le sous-tableau composé des
cases T [a+1], . . . , T [b− 1]. On pourra écrire T [a..b[et T]a..b] pour exclure l’une des extrémités
seulement.

Étude théorique

L’algorithme de tri rapide vu en cours renvoie une copie triée de son entrée, et n’est donc
pas un algorithme en place : il nécessite de réserver de l’espace additionnel. On se propose
d’implémenter une version du tri rapide qui travaille directement dans le tableau d’entrée. Le
cœur de cet algorithme est la procédure de partition :

Algorithme 1 : partition(T, n)

Entrée(s) : T tableau de taille n
Sortie(s) : T est modifié, l’ancienne valeur de T [0] est maintenant à un indice j tel

que ∀x ∈ T [0..j[, x ≤ T [j] et ∀x ∈ T]j..n[, x > T [j]

La procédure de partition permet donc de couper un tableau en deux selon le pivot T [0] : les
éléments inférieurs ou égaux à gauche, les éléments strictement supérieurs à droite. Tout cela
est fait en place, sans réserver de mémoire additionnelle.
Par exemple, si T = [5, 2, 7, 8, 1, 5, 9, 8, 6, 2], après avoir appelé Partition(T), on a séparé

T en utilisant T [0] = 5 comme pivot. Après l’exécution de l’algorithme, T peut donc contenir
[2, 1, 5, 2,5, 7, 8, 9, 8, 6].
L’ordre au sein de chaque partie est arbitraire et dépend de l’implémentation de l’algorithme.
Dans l’exemple précédent, l’ordre choisi est celui d’apparition dans le tableau T avant la par-
tition.

Implémentons l’algorithme de partition. Le principe est de maintenir deux zones dans le
tableau : une qui contient les éléments ≤ T [0] et qui grandit depuis le bord gauche du tableau,
et une qui contient les éléments > T [0] et qui grandit depuis le bord droit.
On pourra donc utiliser deux variables i, s, avec i = 1, s = n − 1 initialement, qui marquent
respectivement la fin de la zone de gauche et le début de la zone de droite :

0 i s n−1

p ?≤ p > p

Une fois que l’on a rangé correctement toutes les cases, on déplace T [0] au bon endroit.

Informatique - MP2I - Lycée Pierre de Fermat 1/4

TP6 2025-2026

Q1. Traduire le rôle des variables i et s en un invariant. Réfléchissez bien à s’il faut inclure
ou non i et s dans les zones qu’ils délimitent.

Q2. Proposer un algorithme en pseudo-code pour la partition, en suivant les indications
précédentes et en respectant l’invariant trouvé à la question précédente. Complexité at-
tendue : O(n).

Q3. Adapter l’algorithme pour qu’il puisse partitionner une partie du tableau, comprise entre
deux indices a et b, et pour qu’il renvoie l’indice du pivot après la partition :

Algorithme 2 : partition entre(T, n, a, b)

Entrée(s) : T tableau de taille n, a, b ∈ J0, n− 1K avec a ≤ b
Sortie(s) : j ∈ Ja, bK tel que l’ancienne valeur de T [a] est maintenant à l’indice j, et

∀x ∈ T [a..j[, x ≤ T [j] et ∀x ∈ T]j..b], x > T [j]

Q4. Écrire un algorithme récursif tri rapide entre permettant de trier une partie de T en
place (c’est à dire sans allouer de mémoire additionnelle) :

Algorithme 3 : tri rapide entre(T, n, a, b)

Entrée(s) : T tableau de taille n, a, b ∈ J0, n− 1K avec a ≤ b
Sortie(s) : T est modifié de sorte que T [a..b] est trié.

Q5. En déduire un algorithme tri rapide(T, n) permettant de trier un tableau selon l’al-
gorithme de tri rapide.

Notons que même si l’on dit que ce tri est en place, il ne va pas s’exécuter en utilisant un
espace mémoire O(1). En effet, les appels récursifs font grandir la pile d’appel.

Q6. En fonction de n, quelle serait la taille maximale atteinte par la pile d’appel au cours du
tri d’un tableau de taille n ?

Implémentation en C et chronométrage

Q7. Implémenter un tri par sélection ou par insertion, et le tester en utilisant une fonction
bool est_trie(int* T, int n) déterminant si un tableau est trié dans l’ordre croissant.

Q8. Implémenter le tri rapide en place, et le tester.

Nous allons comparer les performances du tri rapide avec celles du tri quadratique choisi.
Pour cela, nous devons mesurer leur temps d’exécution, mais la fonction time() ne permet de
faire des mesures qu’à la seconde près.
La librairie <time.h> contient la fonction clock_t clock() qui permet de faire des mesures

plus précises. Cette fonction renvoie le temps écoulé depuis le lancement du programme, dans
une unité arbitraire appelé les clocks. 1 Un clock vaut environ un millionième de seconde. Le
nombre exact de clocks par seconde est accessible avec la macro CLOCKS_PER_SEC , ce qui permet
de mesurer des durées comme suit :

1 clock_t debut = clock ();

2 /* Code à chronom étrer */

3 clock_t fin = clock ();

4 float duree = (float) (fin - debut) / CLOCKS_PER_SEC;

Le (float) sert à forcer une division flottante, afin que le résultat puisse être un nombre à
virgule.

1. Si vous avez des notions d’architecture des ordinateurs : attention, un clock ne correspond pas à un tic
d’horloge du CPU !

Informatique - MP2I - Lycée Pierre de Fermat 2/4

TP6 2025-2026

Q9. Écrire une fonction float test_tri_rapide(int n) qui génère 20 tableaux aléatoires de
taille n, les trie avec le tri rapide, chronomètre le tout, et renvoie le temps moyen écoulé
par tableau, en secondes (on négligera le temps pris par la génération des tableaux).

Q10. Écrire une fonction analogue pour le tri quadratique choisi précédemment.

Q11. Mesurer le temps moyen d’exécution du tri rapide sur n ∈ [100, 200, 300, . . . 4000] et
stocker les valeurs mesurées dans un fichier.

Q12. Faire de même avec le tri quadratique.

✫ Compétences numériques ✫ : Comparaison des performances

Traçons les courbes des temps d’exécution obtenus aux questions précédentes, afin de com-
parer nos différents algorithmes. Le code python suivant permet de lire dans un fichier et d’en
extraire une liste de nombres :

1 # ouverture en mode lecture

2 f = open(nom_fichier , "r")

3 # cha ı̂ne de caract ère avec tout le contenu du fichier

4 contenu = f.read()

5 # sépare en sous -cha ı̂nes selon les espaces et les '\n'

6 nombres = contenu.split()

7 # transforme chaque sous -cha ı̂ne en flottant

8 nombres = list(map(float , nombres))

9 # fermeture du fichier

10 f.close ()

Par exemple, si le fichier contient :

0.21

1.37

52.12

alors après avoir lancé le code python ci-dessus, nombres sera la liste [0.21, 1.37, 52.12].

Q13. Avec matplotlib , tracer les courbes des temps d’exécution du tri rapide, et du tri qua-
dratique choisi.

Q14. Vérifier graphiquement que les complexités sont en O(n log n) et O(n2).

Pour aller plus loin : choix du pivot

Plutôt que de choisir le pivot aléatoirement, ou de toujours prendre le premier élément, on
peut choisir un pivot qui a de bonnes chances de couper le tableau en deux parties équitables.
Une méthode simple est de regarder trois éléments du tableau : le premier, le dernier, et celui du
milieu. On prend alors la médiane des trois, ce qui réduit en pratique les chances de mauvais
pivot.

Q15. Implémenter le choix de pivot des trois médianes, et comparer avec le tri rapide basique.

Informatique - MP2I - Lycée Pierre de Fermat 3/4

TP6 2025-2026

Pour aller encore plus loin : Tri hybride

Le tri par insertion en général plus lent que le tri rapide, mais nous avons vu en cours qu’il est
adaptatif : il peut s’exécuter relativement vite sur des tableaux partiellement triés (et même
en O(n) pour un tableau déjà trié).
Une amélioration du tri rapide consiste alors à arrêter les appels récursifs dès que l’on atteint
des sous-tableaux d’une taille inférieure à un seuil K. On obtient alors un tableau qui n’est pas
trié, mais qui est divisé en zones de tailles ≤ K, de telle sorte que les zones sont triées entre
elles. Par exemple pour K = 3, après avoir lancé le tri rapide partiel proposé ci-dessus sur le
tableau suivant :

[6, 2, 3, 1, 8, 4, 9, 7, 2, 8, 3, 5]

on pourrait obtenir le tableau suivant :

[2, 1, 2, 3, 4, 3, 7, 6, 5, 8, 8, 9]

Chaque bloc individuel de 3 éléments n’est pas trié, mais les blocs sont dans le bon ordre
global : chaque élément du premier bloc est inférieur à chaque élément du deuxième bloc, et
ainsi de suite.

Q16. A la main, appliquer un tri par insertion sur le tableau obtenu ci-dessus après le tri rapide
partiel. Combien d’échanges ont été nécessaires ?

Q17. De manière général, en fonction de K et n, quel est le coût du tri par insertion sur un
tableau divisé en blocs de taille K placés dans le bon ordre (mais où les éléments au sein
de chaque bloc ne sont pas forcément triés) ?

Le tri hybride rapide-insertion consiste donc à appliquer le tri rapide partiel jusqu’à avoir
partitionné le tableau en blocs d’au plus K éléments, puis à appliquer un tri par insertion sur
le tableau obtenu.

Q18. Implémenter le tri hybride, et le tester avec K = 100, en le comparant au tri rapide pour
des tableaux de tailles 10000, 20000, . . . , 100000.

Q19. Tester d’autres valeurs de K et les comparer.

Informatique - MP2I - Lycée Pierre de Fermat 4/4

