
TP7 2025-2026

TP7: Pile et file

L’objectif de ce TP est d’implémenter les piles par tableaux et les files par listes châınées,
et d’étudier une variante de l’algorithme de détection des mots bien-parenthésés. Vous pouvez
télécharger sur Cahier de Prépa une archive de fichiers pour ce TP.

1 Pile

Structure abstraite

On considère dans cette partie des piles dont les éléments sont des int . Le fichier pile.h
de l’archive déclare les 4 opérations des piles vues en cours, ainsi que des fonctions d’affichage
et de libération de mémoire. Le fichier pile mystere.c contient une implémentation complète,
vous ne devez pas (et n’avez pas besoin de) regarder le contenu de ce fichier pendant le TP 1.

Q1. Créer un fichier test pile.c dans lequel vous créerez une fonction main initialisant une
pile vide, y ajoutant et retirant quelques éléments, en vérifiant à l’aide d’assertions que les
éléments dépilés sont ceux attendus. Compiler avec l’implémentation mystère et vérifier
que tout fonctionne.

Implémentation par tableaux

Q2. Implémenter dans un fichier pile tab.c les fonctions de pile.h en utilisant l’implémentation
par tableaux vue en cours. On fixera la taille maximale à 10000. Compiler le programme
de test, cette fois-ci en utilisant la nouvelle implémentation, et vérifiez que l’exécution est
correcte.

Implémentation par liste châınée

On utilise le type struct suivant :

1 typedef struct maillon {

2 T elem;

3 struct maillon* suivant;

4 } maillon_t;

5
6 struct pile {

7 maillon_t* sommet;

8 };

On rappelle que chaque maillon contient un élément, et un pointeur vers le maillon suivant.
Cette châıne de maillons va du sommet de la pile vers la base.

1. Vous pouvez essayer...

Informatique - MP2I - Lycée Pierre de Fermat 1/4



TP7 2025-2026

Évitez de regarder le cours pour les questions de cette partie, afin de retrouver
par vous-même le code.

Q3. Sur papier, représentez une pile avec 2 éléments, implémentée par liste châınée, puis
représentez la même pile sur laquelle on a empilé un nouvel élément. Déduisez-en le code
de la fonction d’empilage.

Q4. Implémentez les autres opérations, puis, en reprenant le même fichier test pile.c, vérifiez
que votre code fonctionne. Pensez à compiler avec toutes les options de débug/warning,
et à exécuter avec valgrind si disponible sur votre machine.

Q5. Optionnel Implémentez des versions alternatives des fonctions d’affichage et de libération
mémoire, en utilisant de la récursivité plutôt que des boucles.

Reste du TP à faire après le cours sur les tableaux redimensionnables.

Implémentation par tableaux redimensionnables

On rappelle l’existence de la fonction realloc :

1 int* t = malloc(n * sizeof(int));

2 // ré alloue un autre tableau de taille m pour t,

3 // et recopie le contenu de l'ancien tableau dans le nouveau.

4 // lib ère l'ancien tableau.

5 t = realloc(t, m * sizeof(int));

Q6. Utilisez le système de tableaux redimensionnables vu en cours pour modifier votre implémentation
des piles par tableaux. Pensez à rajouter à votre fichier de test de quoi vérifier que les
redimensionnements fonctionnent.

(Optionnel) Rétrécissement du tableau

On souhaite non seulement agrandir le tableau lorsque la pile devient trop grande, mais aussi
rétrécir le tableau lorsque la pile rétrécit, afin de ne pas utiliser trop d’espace superflu. Après
chaque dépilage, si le tableau est peu rempli, on réalloue un nouveau tableau plus petit. On ne
descendra jamais en dessous de la taille initiale.

Q7. Ajouter à la fonction depiler du code permettant de diviser la taille du tableau par 2 si
moins de la moitié du tableau est remplie après dépilage.

Q8. La stratégie proposée à la question précédente est-elle adaptée ? Proposer une suite
d’opérations où cette stratégie est très coûteuse, par exemple où le coût moyen d’un
empilage/dépilage est linéaire.

Q9. Proposer une meilleure stratégie.

Informatique - MP2I - Lycée Pierre de Fermat 2/4



TP7 2025-2026

2 Application des piles

On considère une châıne moléculaire 2 , constituée de différents éléments. Chaque élément a
deux polarités possibles : positive et négative. On représente les éléments par des lettres, en
utilisant les majuscules pour les éléments positifs, et les minuscules pour les éléments négatifs.
On appelle une châıne d’éléments un polymère. Par exemple, dabAcCaCBAcCcaDA est
un polymère.
Deux éléments de même type mais de polarités opposées peuvent réagir entre eux pour

disparâıtre. Par exemple, si a et A sont adjacents dans un polymère, ils s’annulent (l’ordre
n’importe pas). On dit qu’un polymère est instable s’il contient des éléments pouvant réagir.
Un polymère instable va donc se réduire en un autre polymère. On appelle forme stable d’un
polymère le polymère obtenu après avoir fait toutes les réductions possible. On admet que tout
polymère admet une forme stable, et que cette forme stable est unique : l’ordre des réductions
n’importe pas. Par exemple dabAcCaCBAcCcaDA peut se réduire 3 fois avant d’atteindre
sa forme stable :

dabAcCaCBAcCcaDA 7−→ dabAcCaCBAcaDA
dabAcCaCBAcaDA 7−→ dabAaCBAcaDA
dabAaCBAcaDA 7−→ dabCBAcaDA

On souhaite mettre au point un programme qui détermine efficacement la forme stable d’un
polymère.

Q10. Donner la forme stable du polymère abcdDCaABeEeA.

Un algorithme näıf calculant la forme stable d’un polymère consiste à appliquer les réductions
trouvées une par une :

Entrée(s) : p = p0p1 . . . pn−1 polymère
Sortie(s) : La forme stable de p

1 s← p;
2 tant que deux éléments sisi+1 peuvent réagir faire
3 s← s0 . . . si−1si+2 . . . sk−1// k est la taille de s

4 retourner s

La boucle peut s’exécuter au plus n
2
fois, et chaque étape coûte O(n) car il faut recréer la

nouvelle châıne en entier. Au total, l’algorithme coûte donc O(n).
Nous allons chercher un algorithme en O(n) dont le principe est similaire à celui de l’algorithme
vu en cours pour les mots bien-parenthésés. L’idée est de lire le polymère caractère par caractère,
en stockant dans une pile les éléments lus n’ayant pas encore pu réagir, et en testant à chaque
caractère lu s’il peut réagir avec le sommet de la pile.

Q11. En pseudo-code, écrire un algorithme implémentant l’idée précédente, et l’exécuter à la
main sur le polymère de la question précédente.

Q12. Ajoutez à votre implémentation des piles une opération renvoyant la taille d’une pile.

Q13. Créez un nouveau fichier C, et écrivez-y une fonction C char* taille_stable(char* polymere)

implémentant votre algorithme. Cette fonction renverra une nouvelle châıne de caractères
donnant la forme stable du polymère d’entrée. 3 Déterminer le nombre d’éléments de la
forme stable du polymère écrit dans le fichier “polymere.txt” de l’archive.

2. Le problème dans cette partie est tiré de : adventofcode.com/2018/day/5.
3. Astuce : en C, si c est une variable de type char contenant le code d’une lettre minuscule, alors

c-'a' + 'A' donne le code de la lettre majuscule correspondante.

Informatique - MP2I - Lycée Pierre de Fermat 3/4

https://adventofcode.com/2018/day/5


TP7 2025-2026

3 File

L’archive du TP contient un fichier file.h contenant les déclarations des 4 opérations des
files, ainsi que des fonctions d’affichage et de libération.

Implémentation par listes châınées

On utilise la structure suivante :

1 typedef struct maillon {

2 int elem;

3 struct maillon* suivant; // de la tete vers la queue

4 } maillon_t;

5 54

6 +

7 +

8 struct file {

9 maillon_t* tete;

10 maillon_t* queue;

11 };

Attention, l’attribut suivant pointe de la tête vers la queue, c’est à dire dans le sens inverse
de la file. Pour s’en souvenir, on peut penser à la file d’attente : quand le caissier dit “au suivant”
c’est la personne en tête qui passe, puis la personne derrière elle, etc...

Q14. Implémentez la fonction de création de file et la fonction de vérification de file vide.

Q15. Faites un schéma pour représenter un enfilage dans une file vide, puis dans une file non
vide. En déduire le code de la fonction enfiler .

Q16. Faites un schéma pour représenter un défilage dans une file avec un seul élément, puis
dans une file avec au moins deux éléments. En déduire le code de la fonction defiler .

Q17. Implémentez les fonctions d’affichage et de libération, et écrivez dans un nouveau fichier
test file.c de quoi tester les fonctions implémentées jusqu’à maintenant.

(Optionnel) Implémentation par tableaux cycliques

On utilise la structure suivante :

1 #define Nmax 10000

2 struct file {

3 int queue; // prochaine case à remplir

4 int nb_elem;

5 int tab[Nmax];

6 };

L’attribut .queue est un indice du tableau, et indique la prochaine case dans laquelle on
écrira si l’on enfile un élément. Cet indice est incrémenté à chaque enfilage.

On rappelle qu’en C, l’opérateur % renvoie un nombre négatif si on l’applique sur un nombre

négatif, par exemple -10 % 3 vaut -1 et pas 2.

Q18. Proposer une formule qui, étant donné deux entiers k ∈ N et x ∈ Z, permet de calculer
le reste de x modulo k, dans l’intervalle J0, k − 1K.

Q19. Implémenter les opérations de file.h dans un fichier file tab.c en utilisant le prin-
cipe de tableau circulaire. On garantira que l’indice .queue est toujours dans l’intervalle

J0, Nmax − 1K.

Informatique - MP2I - Lycée Pierre de Fermat 4/4


	Pile
	Application des piles
	File

