TDG6: Structures de données

MP2I Lycée Pierre de Fermat

EXGI‘CiCG 1. Notation Polonaise Inversée

On s’intéresse dans cet exercice a la notation polonaise inverse (NPI), ou notation postfixze, qui
est une maniere de noter les expressions arithmétiques. On considere une expression arithmétique avec les
notations habituelles :

(a+b) X (c—(d—2))

Dans une telle expression, on appellera les a, b, ... et les nombres des constantes.

On dit que cette expression utilise la notation infixe car les opérateurs sont entre les opérandes (ex :
dans a+b, le + est entre le a et le b). Le principe de la NPT est d’écrire les opérateurs apres les opérandes.
Ainsi, pour effectuer la somme de a et b, on écrira :

ba+

et pour écrire a — b on écrira :

ba—

Remarquons que I'ordre des opérandes est inversé Ainsi, I'expression donnée plus haut s’écrit en NPT :

(2d =) c—) (ba+) x

Nous allons voir que les parentheses sont inutiles, car il existe une unique maniere de lire une expression
NPI. On écrira donc :

2d —c —ba + X
Pour lire une expression arithmétique écrite en NPI, on utilise une pile :
e Initialement, la pile est vide, et on démarre a gauche de ’expression
e On lit chaque opérateur et constante dans ’ordre :

o Lorsque l'on lit une constante, on ’empile

o Lorsque l'on lit un opérateur, on dépile deux éléments de la pile, on leur applique 'opérateur
et on empile le résultat. Le premier argument de l'opérateur est le premier élément dépilé. Par
exemple, si 'on fait une soustraction et que la pile contient 1 au sommet et x en dessous,
I'opération sera 1 — x.

e Si l'expression n’a pas d’erreur de syntaxe, la pile contiendra un unique élément a la fin : c’est la
valeur de ’expression !

Q1. Appliquer la procédure décrite sur 'expression donnée plus haut, et vérifier que I’on obtient bien
la méme valeur qu’en notation infixe.

Q2. Les expressions suivantes sont-elles valides en NPI? Si oui, donner leur traduction en notation

infixe :
(a) a2cd —x+4b—/ (c) xy+ =z
(b) z+y (d) xy+ 2x

Q3. Traduire les expressions suivantes en NPI :

(a) axc+b (c) 2x(axaxa+1)
(b) ax (c+0b) (d) (T==)x 2+ (z/(1 —2))+ =)

Q4. Dans une expression en NPI, donner une relation entre N,, le nombre d’opérateurs et N. le

nombre de constantes. Toute expression vérifiant cette relation est elle une expression correcte en
NPI?

On rajoute maintenant a nos opérateurs les fonctions (sin, cos,log,...). Lorsque l'on lit un nom de

fonction, on dépile un élément, on lui applique la fonction, et on empile le résultat. Par exemple, pour

écrire sin(2) en NPI :

437 x / sin

On introduit la notion d’arité d’un opérateur : 'arité est le nombre d’opérandes que prend 1'opérateur.
Par exemple, + et x sont d’arité 2, et sin est d’arité 1, mais on pourrait avoir des opérateurs d’arités 3,
4, 5, etc... On note a(o) l'arité d’un opérateur o. De plus, on considére les constantes comme des
opérateurs d’arité 0.

Q5. On considere une expression e en NPI. On note o; .. .0, ses opérateurs (constantes incluses).
Proposer une relation généralisant la propriété trouvé a la question précédente.

On rajoute deux nouveaux opérateurs, noté DUP et SWAP, exclusifs a la NPI.

e DUP sert a dupliquer son opérande : lorsqu’on lit DUP, on dépile le sommet de la pile, et en empile
deux copies. Par exemple :

x1+DUP x

va s’évaluer & (1+2) x (1 +z) = (1+)2
o SWAP sert a échanger ses deux opérandes : lorsqu’on lit SWAP, on dépile deux éléments de la
pile, et les empile dans I'ordre inverse. Par exemple :

1 x SWAP /
va s’évaluer a i
Q6. Généraliser a nouveau la relation des questions 4 et 5.

Q7. Ecrire en NPI 'expression suivante, en utilisant le moins de symboles (constantes + opérateurs)
possible :

1+ sin(27)
3+

Q8. Proposer une condition nécessaire et suffisante sur les arités pour qu'une expression en NPI
soit valide.

Exercice 2. Opérations de pile

Q1. Que fait 'algorithme suivant ?

Entrée(s) : P une pile

Sortie(s) : 777

Q « pile_vide();

tant que P n’est pas vide faire
x <+ dépiler(P);

L empiler(Q, z) ;

B W N =

5 retourner @

Q2. En s’inspirant de ’algorithme précédent, écrire un algorithme permettant de créer une copie d’une
pile P. La pile en entrée pourra étre modifiée pendant I’exécution, mais a la fin de I'algorithme, elle
devra étre intacte.

Q3. Ecrire un algorithme permettant de calculer la taille d’une pile, i.e. le nombre d’éléments qu’elle
contient. La pile devra étre intacte en sortie.

Q4. Donner un algorithme permettant de tester 1'égalité entre deux piles. Cet algorithme renverra
vrai lorsque les deux piles en entrée contiennent les mémes éléments dans le méme ordre, faux sinon.
Les piles devront étre intactes en sortie.

On souhaite maintenant rajouter aux piles 'opération taille, en tant qu’opération de base. Une premiere
possibilité est de reprendre 1'algorithme de la Q3 en O(|P|), mais on peut en fait trouver des solutions
plus efficaces si ’'on revient aux implémentations concretes.

Q5. Comment réaliser cette opération en O(1) dans 'implémentation par tableaux ?

Q6. On considere I'implémentation par listes chainées des piles vue en cours :

struct maillon {

int donnees;

struct maillon* suivant;
};

typedef struct maillon maillon_t;

struct liste {
maillon_t* tete;
3
typedef struct liste liste_t;

O © 0O Ui WD~

—_

Ecrire une fonction \ int taille(liste_tx L) \ s’exécutant en O(n) calculant la taille d’une pile.

Q7. Comment peut-on modifier I'implémentation par listes chainées pour pouvoir obtenir la taille en

O(1)?

Exercice 3. Rotation de pile

Une rotation unitaire de pile consiste a prendre 1’élément au sommet de la pile, et a le déplacer a la
base. Voici un exemple de rotation unitaire :

Une rotation d’ordre k € N est une succession de k rotations unitaires. Voici un exemple de rotation
d’ordre 2 :

Q1. Ecrire un algorithme Rotation-Unitaire permettant d’effectuer une rotation unitaire sur une
pile P. Sa complexité devra étre en O(|P)).

Q2. Décrire en une phrase un algorithme permettant d’effectuer £ € N rotations sur une pile P, en
temps O(k x |P|).

Q3. Ecrire un algorithme Rotation permettant d’effectuer £k € N rotations sur une pile P. Sa
complexité devra étre en O(|P)).

Exercice 4. Génération de mots bien parenthésés

Nous avons vu en cours un algorithme permettant de déterminer si un mot est bien parenthésé, en
utilisant une pile. On s’intéresse ici a la génération de mots bien parenthésés, d’une maniere plus efficace
que de générer un mot au hasard jusqu’a ce qu’il soit bien parenthésé.

Plus précisément, étant donné un entier n € N, on souhaite générer un mot de taille 2n bien parenthésé
sur lalphabet (,), [, J.

Le principe va étre d’utiliser une pile pour stocker les parentheses ouvertes n’ayant pas encore été
fermées. A chaque étape de I'algorithme, on va tirer a pile ou face, et selon le résultat :

e soit ajouter une parenthese ouvrante au mot, choisie aléatoirement parmis les parentheses ouvrantes,
et donc empiler la parenthese sur la pile;

e soit ajouter une parenthese fermante au mot, auquel cas ce doit étre la parenthese correspondante
du sommet de pile.

On garde également en mémoire le nombre de parentheses ouvrantes, de fagon a ce que 'algorithme en
ouvre exactement n.

Q1. Appliquer l'algorithme pour générer quelques mots bien parenthésés

Q2. Ecrire le pseudo-code correspondant.

Exercice 5. Modélisation

On souhaite modéliser une usine de fabrication de burgers a la chaine. Les burgers fabriqués se déplacent
sur des tapis roulants, en étant déplacés de point en point. A chaque point, des machines ajoutent au burger
un ingrédient. Les burgers démarrent vides, avec juste un pain inférieur, au point de départ. Une fois au
point d’arrivée, les burgers sont complétés par un pain supérieur, emballés et envoyés aux clients. Chaque
burger est associé a une commande indiquant pour chaque ingrédient si oui ou non le burger doit le contenir

L’intérieur de 'usine est constitué :

e des points Py, Py, ..., P, P,11, avec Py le point de départ P, le point d’arrivée, et P; le point ajoutant
I'ingrédient 1.
e des tapis roulants T, ..., T,, avec T; amenant les produits du point P; au point P;,

On simule ensuite le fonctionnement de l'usine en parallele :

e Chaque point P; prend un temps t; € N pour ajouter son ingrédient.

e Chaque tapis roulant prend un temps considéré comme négligeable pour transporter les burgers d’un
point a un autre, et peut supporter un nombre infini de burgers a la fois.

Q1. Proposer des structures a utiliser pour les ingrédients, les commandes, les burgers, les points, les
tapis.

Q2. Ecrire une procédure simuler_point (i) qui simule une étape du point i pour i € [1,n]

Q3. Ecrire une procédure simuler_usine() qui simule une étape de l'usine entiere. Y a-t-il une

différence entre simuler les points du début vers I'arrivée et de 'arrivée vers le début 7 Quelle option
semble la plus appropriée ?

=W N

= W N

Exercice 6. File avec deux piles

On étudie une implémentation des files utilisant deux piles, une pile-queue et une pile-téte :

e On enfile les éléments en les empilant sur la pile-queue

e On défile les éléments en dépilant la pile-téte

e Si la pile-téte est vide lorsque 'on défile, on commence par transvaser toute la pile-queue dans la
pile-téte.

Q1. On considere une file F' initialement vide. Représenter F, sous forme de file abstraite et dans
I'implémentation & deux piles proposée, aux instants (A), (B), (C), (D), (E) de la suite d’opérations
suivante :

(A); enfiler 1; enfiler 2; enfiler 3; (B); défiler; (C)
défiler; enfiler 4; (D); défiler; enfiler 5;
enfiler 6; défiler; enfiler 7 (E)

En C, on utiliserait le type suivant :

typedef struct file_{
pile_t* pile_tete;
pile_t* pile_queue;
} file_t;

en supposant que l'on dispose d'un type de pile et des 4 opérations des piles :

pile_t* pile_creer();

bool pile_est_vide(pile_t* p);

void empiler(pile_t* p, T x); // T est le type des données stockées
T depiler(pile_t* p);

Q2. Rappeler les 4 opérations de la SDA de file, et les implémenter en C avec la structure concrete
a deux piles proposée. Donner la complexité asymptotique de chacune en fonction de la taille n de
la file.

Ainsi, la complexité pire cas du défilage n’est pas constante. Cependant, on peut imaginer que les pires
cas sont rares, car ils demandent d’avoir enfilé de nombreuses valeurs sans les avoir défilées. Autrement
dit, méme si une opération peut étre cotiteuse, une suite d’opérations pourrait étre, au total, pas trop
chere.

On étudie une suite d’opérations 01,09, ...,0,, ou chaque o; est soit un enfilage, soit un défilage. On
appelle transvasage toute opération de défilage ayant nécessité de renverser la pile queue dans la pile
tete.

Q3. Supposons qu’un transvasage a déplacé K éléments de la pile queue a la pile téte. Que peut-on
dire du nombre d’enfilages et de défilages entre ce transvasage et le précédent ?

Q4. Majorer le cott asymptotique total des opérations oy,...,0, en fonction de n. On pourra
considérer les indices 41, .. .1, des transvasages.

Q5. Quel est le cout moyen d’une opération dans cette implémentation ?

L’étude du cout moyenné de suites d’opérations s’appelle ’analyse amortie, et le cotit d’une opération
est alors appelé sa complexité amortie. Nous avons ainsi montré dans cet exercice que I'implémentation
proposée des files permet d’enfiler et de défiler en temps constant amorti. Ce temps correspond a ce que
I’'on observerait, en pratique, si ’on utilisait cette implémentation des files dans un programme faisait un
grand nombre d’opérations.

