
TD6: Structures de données

MP2I Lycée Pierre de Fermat

Exercice 1. Notation Polonaise Inversée

On s’intéresse dans cet exercice à la notation polonaise inverse (NPI), ou notation postfixe, qui
est une manière de noter les expressions arithmétiques. On considère une expression arithmétique avec les
notations habituelles :

(a+ b)× (c− (d− 2))

Dans une telle expression, on appellera les a, b, ... et les nombres des constantes.
On dit que cette expression utilise la notation infixe car les opérateurs sont entre les opérandes (ex :

dans a+ b, le + est entre le a et le b). Le principe de la NPI est d’écrire les opérateurs après les opérandes.
Ainsi, pour effectuer la somme de a et b, on écrira :

b a +

et pour écrire a− b on écrira :

b a −

Remarquons que l’ordre des opérandes est inversé Ainsi, l’expression donnée plus haut s’écrit en NPI :

((2 d −) c −) (b a +) ×

Nous allons voir que les parenthèses sont inutiles, car il existe une unique manière de lire une expression
NPI. On écrira donc :

2 d − c − b a + ×

Pour lire une expression arithmétique écrite en NPI, on utilise une pile :

• Initialement, la pile est vide, et on démarre à gauche de l’expression

• On lit chaque opérateur et constante dans l’ordre :

◦ Lorsque l’on lit une constante, on l’empile

◦ Lorsque l’on lit un opérateur, on dépile deux éléments de la pile, on leur applique l’opérateur
et on empile le résultat. Le premier argument de l’opérateur est le premier élément dépilé. Par
exemple, si l’on fait une soustraction et que la pile contient 1 au sommet et x en dessous,
l’opération sera 1− x.

• Si l’expression n’a pas d’erreur de syntaxe, la pile contiendra un unique élément à la fin : c’est la
valeur de l’expression !

Q1. Appliquer la procédure décrite sur l’expression donnée plus haut, et vérifier que l’on obtient bien
la même valeur qu’en notation infixe.

1

Q2. Les expressions suivantes sont-elles valides en NPI ? Si oui, donner leur traduction en notation
infixe :

(a) a 2 c d −×+ 4 b− /

(b) x+ y

(c) x y + z

(d) x y + z×

Q3. Traduire les expressions suivantes en NPI :

(a) a× c+ b

(b) a× (c+ b)

(c) 2× (a× a× a+ 1)

(d) (1− x)× (2 + (x/(1− x)) + x)

Q4. Dans une expression en NPI, donner une relation entre Nop le nombre d’opérateurs et Nc le
nombre de constantes. Toute expression vérifiant cette relation est elle une expression correcte en
NPI ?

On rajoute maintenant à nos opérateurs les fonctions (sin, cos, log, . . .). Lorsque l’on lit un nom de
fonction, on dépile un élément, on lui applique la fonction, et on empile le résultat. Par exemple, pour
écrire sin(3π

4
) en NPI :

4 3 π × / sin

On introduit la notion d’arité d’un opérateur : l’arité est le nombre d’opérandes que prend l’opérateur.
Par exemple, + et × sont d’arité 2, et sin est d’arité 1, mais on pourrait avoir des opérateurs d’arités 3,
4, 5, etc... On note a(o) l’arité d’un opérateur o. De plus, on considère les constantes comme des
opérateurs d’arité 0.

Q5. On considère une expression e en NPI. On note o1 . . . on ses opérateurs (constantes incluses).
Proposer une relation généralisant la propriété trouvé à la question précédente.

On rajoute deux nouveaux opérateurs, noté DUP et SWAP, exclusifs à la NPI.

• DUP sert à dupliquer son opérande : lorsqu’on lit DUP, on dépile le sommet de la pile, et en empile
deux copies. Par exemple :

x 1 +DUP ×

va s’évaluer à (1 + x)× (1 + x) = (1 + x)2

• SWAP sert à échanger ses deux opérandes : lorsqu’on lit SWAP, on dépile deux éléments de la
pile, et les empile dans l’ordre inverse. Par exemple :

1 x SWAP /

va s’évaluer à 1
x

Q6. Généraliser à nouveau la relation des questions 4 et 5.

Q7. Écrire en NPI l’expression suivante, en utilisant le moins de symboles (constantes + opérateurs)
possible :

1 + sin(3π
4
)

3 + 3π
4

Q8. Proposer une condition nécessaire et suffisante sur les arités pour qu’une expression en NPI
soit valide.

2

Exercice 2. Opérations de pile

Q1. Que fait l’algorithme suivant ?

Entrée(s) : P une pile
Sortie(s) : ? ? ?

1 Q← pile vide();
2 tant que P n’est pas vide faire
3 x← dépiler(P);
4 empiler(Q, x) ;

5 retourner Q

Q2. En s’inspirant de l’algorithme précédent, écrire un algorithme permettant de créer une copie d’une
pile P . La pile en entrée pourra être modifiée pendant l’exécution, mais à la fin de l’algorithme, elle
devra être intacte.

Q3. Écrire un algorithme permettant de calculer la taille d’une pile, i.e. le nombre d’éléments qu’elle
contient. La pile devra être intacte en sortie.

Q4. Donner un algorithme permettant de tester l’égalité entre deux piles. Cet algorithme renverra
vrai lorsque les deux piles en entrée contiennent les mêmes éléments dans le même ordre, faux sinon.
Les piles devront être intactes en sortie.

On souhaite maintenant rajouter aux piles l’opération taille, en tant qu’opération de base. Une première
possibilité est de reprendre l’algorithme de la Q3 en O(|P |), mais on peut en fait trouver des solutions
plus efficaces si l’on revient aux implémentations concrètes.

Q5. Comment réaliser cette opération en O(1) dans l’implémentation par tableaux ?

Q6. On considère l’implémentation par listes châınées des piles vue en cours :

1 struct maillon {

2 int donnees;

3 struct maillon* suivant;

4 };

5 typedef struct maillon maillon_t;

6
7 struct liste {

8 maillon_t* tete;

9 };

10 typedef struct liste liste_t;

Écrire une fonction int taille(liste_t* L) s’exécutant en O(n) calculant la taille d’une pile.

Q7. Comment peut-on modifier l’implémentation par listes châınées pour pouvoir obtenir la taille en
O(1) ?

3

Exercice 3. Rotation de pile

Une rotation unitaire de pile consiste à prendre l’élément au sommet de la pile, et à le déplacer à la
base. Voici un exemple de rotation unitaire :

1
2
3
4

−→

2
3
4
1

Une rotation d’ordre k ∈ N est une succession de k rotations unitaires. Voici un exemple de rotation
d’ordre 2 :

1
2
3
4

−→

3
4
1
2

Q1. Écrire un algorithme Rotation-Unitaire permettant d’effectuer une rotation unitaire sur une
pile P . Sa complexité devra être en O(|P |).
Q2. Décrire en une phrase un algorithme permettant d’effectuer k ∈ N rotations sur une pile P , en
temps O(k × |P |).
Q3. Écrire un algorithme Rotation permettant d’effectuer k ∈ N rotations sur une pile P . Sa
complexité devra être en O(|P |).

Exercice 4. Génération de mots bien parenthésés

Nous avons vu en cours un algorithme permettant de déterminer si un mot est bien parenthésé, en
utilisant une pile. On s’intéresse ici à la génération de mots bien parenthésés, d’une manière plus efficace
que de générer un mot au hasard jusqu’à ce qu’il soit bien parenthésé.

Plus précisément, étant donné un entier n ∈ N, on souhaite générer un mot de taille 2n bien parenthésé
sur l’alphabet (,), [,].
Le principe va être d’utiliser une pile pour stocker les parenthèses ouvertes n’ayant pas encore été

fermées. A chaque étape de l’algorithme, on va tirer à pile ou face, et selon le résultat :

• soit ajouter une parenthèse ouvrante au mot, choisie aléatoirement parmis les parenthèses ouvrantes,
et donc empiler la parenthèse sur la pile ;

• soit ajouter une parenthèse fermante au mot, auquel cas ce doit être la parenthèse correspondante
du sommet de pile.

On garde également en mémoire le nombre de parenthèses ouvrantes, de façon à ce que l’algorithme en
ouvre exactement n.

Q1. Appliquer l’algorithme pour générer quelques mots bien parenthésés

Q2. Écrire le pseudo-code correspondant.

4

Exercice 5. Modélisation

On souhaite modéliser une usine de fabrication de burgers à la châıne. Les burgers fabriqués se déplacent
sur des tapis roulants, en étant déplacés de point en point. A chaque point, des machines ajoutent au burger
un ingrédient. Les burgers démarrent vides, avec juste un pain inférieur, au point de départ. Une fois au
point d’arrivée, les burgers sont complétés par un pain supérieur, emballés et envoyés aux clients. Chaque
burger est associé à une commande indiquant pour chaque ingrédient si oui ou non le burger doit le contenir
L’intérieur de l’usine est constitué :

• des points P0, P1, . . . , Pn, Pn+1, avec P0 le point de départ Pn le point d’arrivée, et Pi le point ajoutant
l’ingrédient i.

• des tapis roulants T0, . . . , Tn, avec Ti amenant les produits du point Pi au point Pi+1

On simule ensuite le fonctionnement de l’usine en parallèle :

• Chaque point Pi prend un temps ti ∈ N pour ajouter son ingrédient.

• Chaque tapis roulant prend un temps considéré comme négligeable pour transporter les burgers d’un
point à un autre, et peut supporter un nombre infini de burgers à la fois.

Q1. Proposer des structures à utiliser pour les ingrédients, les commandes, les burgers, les points, les
tapis.

Q2. Écrire une procédure simuler point(i) qui simule une étape du point i pour i ∈ J1, nK

Q3. Écrire une procédure simuler usine() qui simule une étape de l’usine entière. Y a-t-il une
différence entre simuler les points du début vers l’arrivée et de l’arrivée vers le début ? Quelle option
semble la plus appropriée ?

5

Exercice 6. File avec deux piles

On étudie une implémentation des files utilisant deux piles, une pile-queue et une pile-tête :

• On enfile les éléments en les empilant sur la pile-queue

• On défile les éléments en dépilant la pile-tête

• Si la pile-tête est vide lorsque l’on défile, on commence par transvaser toute la pile-queue dans la
pile-tête.

Q1. On considère une file F initialement vide. Représenter F , sous forme de file abstraite et dans
l’implémentation à deux piles proposée, aux instants (A), (B), (C), (D), (E) de la suite d’opérations
suivante :

(A); enfiler 1; enfiler 2; enfiler 3; (B); défiler; (C)

défiler; enfiler 4; (D); défiler; enfiler 5;

enfiler 6; défiler; enfiler 7 (E)

En C, on utiliserait le type suivant :

1 typedef struct file_{

2 pile_t* pile_tete;

3 pile_t* pile_queue;

4 } file_t;

en supposant que l’on dispose d’un type de pile pile_t et des 4 opérations des piles :

1 pile_t* pile_creer ();

2 bool pile_est_vide(pile_t* p);

3 void empiler(pile_t* p, T x); // T est le type des donn ées stock ées

4 T depiler(pile_t* p);

Q2. Rappeler les 4 opérations de la SDA de file, et les implémenter en C avec la structure concrète
à deux piles proposée. Donner la complexité asymptotique de chacune en fonction de la taille n de
la file.

Ainsi, la complexité pire cas du défilage n’est pas constante. Cependant, on peut imaginer que les pires
cas sont rares, car ils demandent d’avoir enfilé de nombreuses valeurs sans les avoir défilées. Autrement
dit, même si une opération peut être coûteuse, une suite d’opérations pourrait être, au total, pas trop
chère.

On étudie une suite d’opérations o1, o2, . . . , on, où chaque oi est soit un enfilage, soit un défilage. On
appelle transvasage toute opération de défilage ayant nécessité de renverser la pile queue dans la pile
tête.

Q3. Supposons qu’un transvasage a déplacé K éléments de la pile queue à la pile tête. Que peut-on
dire du nombre d’enfilages et de défilages entre ce transvasage et le précédent ?

Q4. Majorer le coût asymptotique total des opérations o1, . . . , on en fonction de n. On pourra
considérer les indices i1, . . . ip des transvasages.

Q5. Quel est le coût moyen d’une opération dans cette implémentation ?

L’étude du coût moyenné de suites d’opérations s’appelle l’analyse amortie, et le coût d’une opération
est alors appelé sa complexité amortie. Nous avons ainsi montré dans cet exercice que l’implémentation
proposée des files permet d’enfiler et de défiler en temps constant amorti. Ce temps correspond à ce que
l’on observerait, en pratique, si l’on utilisait cette implémentation des files dans un programme faisait un
grand nombre d’opérations.

6

