1. INTRODUCTION

1 Introduction

Nous avons déja rencontré deux structures de données assez simples :

— Les tableaux
— Les structs C

Ces deux types d’objets permettent de stocker des données d'une maniere structurée :

les tableaux comme les structs sont munis d’opérations bien spécifiques pour écrire ou lire des
valeurs : acces a une case, a un attribut...

Définition 1
La spécification d’'une structure de données abstraite est constituée de :
— son type/format, c’est a dire le genre d’informations que 'on peut enregistrer ;

— ses opérations, c’est a dire la maniere dont on interagit avec la structure, la maniere
dont on y lit, écrit et modifie des données.

Exemple 1

Un tableau d’éléments de type |[T| est une structure de données abstraite. C’est une suite
finie d’éléments de type [T], et ses opérations sont :

— |creer_tab(n) | : crée et renvoie un tableau d’une taille n
— ‘ecrire(t, i, x) \ : écrit = a la 7-eme case du tableau ¢

— |1lire(t, i) |: renvoie la i-eme case du tableau ¢

— : envoie la taille du tableau ¢

En C, sil’on utilise directement les tableaux fournis par le langage, comme on I’a fait jusqu’a

maintenant, on ne peut pas obtenir la taille d’un tableau donné, on doit s’en rappeler dans une
variable a part. On peut néanmoins implémenter notre propre version des tableaux, en utilisant
les structs :

© 00 O U Wi T W N

W N =

struct tableau{
int taille;
float*x valeurs;
}s
typedef struct tableau tableau_t;

Ensuite, on peut implémenter les opérations données par la spécification des tableaux :

tableau_t* creer_tab(int taille){
tableau_t* res = malloc(sizeof (tableau_t));
res->taille = taille;

malloc(taille*sizeof (float));
i < taille; i++){

res->valeurs
= H
[i] = 0;

for (int i
res->valeur

}

0
s

}

(On choisit arbitrairement de mettre tous les éléments a 0 initialement.)

void ecrire(struct tableau_t* t, int i, float =x){
assert (0 <= i && i < t->taille);
t->valeurs[i] = x;

}

1 MP2I Pierre de Fermat 2025-2026

1. INTRODUCTION

On remarque qu’implémenter nous méme la structure de tableau permet de rajouter une
couche de sécurité : on vérifie systématiquement qu’on accede bien a une case valide du tableau.

1 |float lire(struct tableau_t* t, int i){
2 assert (0 <= i && i < t->taille);

3 return t->valeurs[i];

4 |}

1 |int taille(struct tableau_t* t){

2 return t->taille;

31}

En ayant écrit les fonction précédentes, on a implémenté la structure de données abstraite
appelée “tableau”. On dit que I'on a implémenté une structure de données concretes.

Dans le reste du programme, peut alors manipuler les tableaux de la maniere suivante :

1 |void echanger (tableau_t* t, int i, int j){
2 float x = lire(t, 1i);

3 float y = lire(t, j);

4 ecrire(t, i, y);

5 ecrire(t, j, 1);

6 |}

7

8 |int main (){

9 tableau_t* t = creer_tab(15);

10 printf ("Tableau créé, de taille %d\n", taille(t);
11 ecrire(t, 7, 0.25);

12 ecrire(t, 2, 11.5);

13 echanger (t, 2, 7);

14 |}

Notons que le code ci-dessus fonctionnerait peu importe comment est implémenté le type
[tableau_t |, du moment qu'il existe et que les quatre opérations existent aussi : on a seulement
besoin de la spécification de la SDA de tableau.

Définition 2

Une structure de données concréte est 'implémentation d'une structure de données
abstraite.

Dans un programme, lorsque ’'on implémente une structure de données, on prend le point
de vue de la SDC : on choisit une implémentation, on crée les opérations concretes. Cependant,
lorsque I'on utilise une structure de données dans du code, on considere la structure abstraite.

Par exemple, avec la structure de tableaux implémentée plus haut, on pourrait uniquement
utiliser les 4 opérations de la spécification :

tableau_t* t_1 = creer_tableau(5); // VALIDE
tableau_t* t_2 malloc(sizeof (tableau_t)); // INVALIDE

float x = lire(t_1, 2); // VALIDE
float y t_1->valeurs[2]; // INVALIDE

T W N

MP2I Pierre de Fermat 2025-2026 2

1. INTRODUCTION

En pratique, il sera courant d’implémenter une structure de données en écrivant un couple
de fichiers .h/.c. Le fichier header ne contient que les déclarations, y compris pour la structure,
qui est déclarée sans remplir les attributs :

1 |typedef struct tableau tableau_t;

2

3 |// Crée un tableau de taille “taille non initialisé

4 |tableau_t* creer_tab(int taille);

5

6 |// Renvoie la case i de t. Précondition: i est un indice valide
7 |float lire(struct tableau_t* t, int 1i);

8

9 |// Stocke x dans la case i de t. Précondition: i est un indice valide
10 |void ecrire(struct tableau_t* t, int i, float x);

11

12 |// Renvoie le nombre de cases de t

13 |int taille(struct tableau_tx* t);

Le fichier C contiendra les définitions de la structure et des fonctions. Ainsi, les fichiers C
qui utiliseront la structure n’auront aucun moyen d’accéder aux attributs de la structure, car
ils n'ont acces qu’au fichier header. On parle d’utilisation en boite noire, car on utilise la
structure sans connaitre son fonctionnement interne.

La documentation d’une structure de données concrete est tres importante, car c¢’est elle qui
explique a l'utilisateur comment utiliser les différentes opérations. Autrement dit, la documen-
tation est la spécification. Plus que jamais, lorsque I’on implémente des structures de données,
on doit commenter le code.

Définition 3
Dans la suite, on distinguera trois familles d’opérations possibles pour les SDA :

— Les constructeurs, qui servent a créer et initialiser une structure
— Les accesseurs, qui permettent de lire une information dans la structure

— Les transformateurs, qui permettent de modifier la structure : en changeant une
valeur, en ajoutant ou supprimant un élément, etc...

Certaines opérations peuvent étre dans deux (ou plus) familles a la fois.

Par exemple pour la SDA de tableau :

— est un constructeur ;
— est un accesseur ;

— est un transformateur
— est un accesseur.

On pourrait imaginer une cinquieme opération, | copie(t) | qui renvoie une copie du tableau
t : c’est a la fois un constructeur ET un accesseur.

3 MP2I Pierre de Fermat 2025-2026

2. PILE

Destructeur Lorsque I'on crée une SDC, on rajoute parfois un quatrieme type d’opérations,
les destructeurs, qui servent a détruire une structure et libérer toutes les ressources qu’elle
utilisait.

On pourrait rajouter un destructeur aux tableaux comme suit :

void free_tab(struct tableaux t){
free(t->valeurs);
free(t);

=W N =

3

Dans la suite du chapitre, on fixe | T | un type, et on considerera des structures permettant de
stocker des éléments de ce type. On omettra généralement les destructeurs dans la description
des SDA, mais il faudra systématiquement penser a les programmer pour les SDC'!

2 Pile

Une pile est une structure de données se comportant comme une pile d’assiette : on peut
enlever 'assiette du dessus, ajouter une assiette au sommet de la pile, mais il est difficile
d’insérer ou de retirer une assiette au milieu.

Cette structure fonctionne donc selon le principe “Dernier arrivé, premier sorti”, ou LIFO
(Last In First Out) : la derniere donnée que I'on ajoute sera toujours la premiere donnée que
I'on devra retirer : c’est le sommet de la pile. Inversement, la premiere valeur que 1’'on ajoute
dans une pile ne pourra étre lue qu’'une fois que toutes les valeurs suivantes ont été enlevées :
c’est la base de la pile.

Exemple 2

Voici un exemple d’utilisation dune pile :

A Structure de données abstraite

Une pile représente une suite finie d’éléments de type [T], dont la taille peut varier. Ses
opérations sont :

— pile_vide() crée une nouvelle pile vide (Constructeur) ;
— empiler(P, z) ajoute un nouvel élément x sur le sommet de la pile P (Transformateur) ;
— depiler(P) enleve le sommet de la pile, et le renvoie (Transformateur et Accesseur) ;

— est_vide(P) détermine si la pile P est vide (Accesseur).
Remarque 1

Dans certaines définitions, on a deux opérations séparées pour lire le sommet de pile et pour
le supprimer. Ici, 'opération de dépilage est a la fois un accesseur et un transformateur.

MP2I Pierre de Fermat 2025-2026 4

2. PILE

Exercice 1

Exécuter I'algorithme suivant sur le tableau T = [3,1,4,1, 5] : que fait-il ?

Algorithme 1 :777

Entrée(s) : T un tableau de taille n
Sortie(s) : 777

P <+ pile_vide();

pour i =0 a n — 1 faire

L empiler (P, Ti]);

14+ 0;

tant que non est_vide(P) faire

L T[i] < depiler(P);

[SUR VR

4 o o oA

11+ 1;

B Implémentation par tableau

Pour commencer, on s’autorise a avoir une taille limite pour la pile. On se fixe N4, un

entier, et on implémente une pile avec un tableau de taille N,,q,.

STk W N

Considérons la structure suivante :

#define Nmax 10000
struct pile{
int nb_elem;
T tab[Nmax];
};
typedef struct pile pile_t;

Le principe de cette implémentation est que pour une pile [p], seuls les premiers

éléments de ont un sens, et les cases d’indice et au-dela peuvent contenir

n’importe quoi. La case contient la base de la pile, et ’p—>tab [p->nb_elem-1] ‘ contient
le sommet de la pile.

Exemple 3

Considérons une pile initialement vide, et dessinons la en tant que SDA et que SDC apres

quelques opérations.

L’implémentation des fonctions |pile_vide | et |est_vide | sont assez élémentaires vu la struc-

ture :

1 |pile_t* pile_vide (O{

2 pile_t* p = malloc(sizeof (pile_t));
3 p->nb_elem = 0;

4 return p;

5 1}

6

7 |/* Libére la mémoire allouée pour p (destructeur) */
8 |void free_pile(pile_t* p){

9 free(p);

10 |2

11

12 |bool est_vide(pile_t* p){

13 return (p->nb_elem == 0);

14 |}

5 MP2I Pierre de Fermat 2025-2026

2. PILE

Empilage, dépilage Pour empiler, on devra écrire dans la case | p->tab[p->nb_elem] | et incrémenter

le nombre d’éléments. Pour dépiler, c¢’est 'inverse :

1 |void empiler(pile_t* p, T x){

2 assert (p->nb_elem < Nmax); // impossible d'empiler sur une pile pleine
3 p->tab[p->nb_elem] = x;

4 p->nb_elem++;

51}

6

7 |T depiler(pile_t* p){

8 assert (!est_vide(p)); // impossible de dépiler une pile vide
9 T res = p->tab[p->nb_elem-1];

10 p~->nb_elem--;

11 return res;

12 |2

Toutes ces opérations ont une complexité O(1).

C Implémentation par liste chainée

L’implémentation basique par tableau est efficace, mais oblige les piles a avoir une taille
limite. L’implémentation par liste chainée permet d’éviter cette contrainte. Une liste chainée
est une structure composée de maillons reliés les uns aux autres en une unique chaine. Chaque
maillon contient un élément ainsi qu’une référence vers le maillon suivant. On stocke les éléments
dans 'ordre du sommet vers la base :

typedef struct maillon {
T elem;
struct maillon* suivant;
} maillon_t;

typedef struct pile{
maillon_t* sommet;
} pile_t;

© 00 3O Uk Wi+

Exemple 4

Supposons que 1'on a créé la pile suivante dans le main :

pile_t* P = pile_vide();
empiler (P, 6);
empiler (P, 7);
empiler (P, 8);

= W N

Voici a quoi ressemblerait la pile abstraite, et I’état réel de la mémoire :

MP2I Pierre de Fermat 2025-2026 6

2. PILE

Dans cette implémentation, on utilise le pointeur pour signaler qu'un maillon est le
dernier, i.e. que c’est la base de la pile. Implémentons les différentes opérations.

Création de pile, déterminer si une pile est vide Une pile vide ne contient aucun
maillon :

pile_t* pile_vide (O{
pile_t* p = malloc(sizeof (pile_t));
p->sommet = NULL;
return p;

}

bool est_pile_vide(pile_t* p){
return (p->sommet == NULL);
}

© 00 3O Uk W+

Les deux opérations sont en O(1).

Empiler un élément au sommet Pour empiler un élément, on crée un nouveau maillon
contenant 1’élément, puis il faut raccorder les pointeurs de la pile et du nouveau maillon pour
satisfaire le schéma suivant :

En tenant compte de tous les liens qui sont créés / modifiés / supprimés, on obtient le code
suivant :

1 |void empiler(pile_t* p, T x){

2 maillon_t* nouv_sommet = malloc(sizeof (maillon_t));
3

4 nouv_sommet ->elem = Xx;

5 nouv_sommet ->suivant = p->sommet;

6 p->sommet = nouv_sommet;

71}

Complexité : O(1)

7 MP2I Pierre de Fermat 2025-2026

—_

2. PILE

Dépiler le sommet de pile Cette opération est essentiellement 'inverse de celle d’empilage :
on doit extraire le maillon correspondant au sommet et recoller les liens. Il ne faut pas oublier
de libérer la mémoire du maillon extrait afin d’éviter les fuites mémoire :

T depiler(pile_t* p){
assert (!est_pile_vide(p));

T res = p->sommet->elem;
maillon_t* nouveau_sommet = p->sommet->suivant;

free(p->sommet);
p->sommet = nouveau_sommet;
return res;

O © 00O Uk Wi

}

Complexité : O(1)

Afficher une pile Lorsqu’on implémente une structure en C, il peut étre utile d’ajouter des
opérations qui ne font pas partie de la SDA, mais qui sont utiles pour le débug.

Pour afficher une pile, on parcourt tous ses éléments et on les affiche un par un. Si on le fait
dans 'ordre naturel, on affichera le sommet en premier :

1 |void print_pile(pile_t* p)A{

2 maillon_t* m = p->sommet;

3 while (m != NULL){

4 afficher m->elem; // dépend du type des données stockées
5 m = m->suivant;

6 }

71}

Quand on manipule des listes chainées, ce type de boucles revient souvent. En C, il est assez
courant d’écrire ces boucles avec des for plutot que des while, comme suit :

1 |for(maillon_t* m = p->sommet; m != NULL; m = m->suivant){
2
3 17

Une telle boucle se lirait “pour chaque maillon m de p, faire ...”

Exercice 2

Réécrire la fonction d’affichage en utilisant une boucle for.

MP2I Pierre de Fermat 2025-2026 8

—_

2. PILE

Libérer une pile On parcourt la liste chainée pour libérer un a un les maillons. Il faut faire
attention a l'ordre des opérations : une fois qu’on a libéré un maillon, on ne peut plus accéder a
ses attributs. Une solution est d’utiliser un pointeur pour se rappeler a chaque tour de ’adresse
du maillon a libérer, et de le libérer apres étre passé au suivant :

void free_pile(pile_t* p){
maillon_t* m = p->sommet;
// Invariant: tous les maillons précédant strictement m
// ont été libérés
while (m != NULL){
maillon_t* a_liberer = m;
m = m->suivant;
free(a_liberer);
3
free(p);

— O © 00O Ui Wi+

Exercice 3
Dessiner I'état de la mémoire au fil de I'exécution de |free_pile|, et vérifier que toute la

mémoire est libérée.

Complexité : O(n)

D Utilisation de la SDA

Supposons que l'on a écrit un header pile.h avec la spécification de la SDA de pile.
Supposons que 'on a aussi créé deux fichiers indépendants pile tab.c et pile_chaine.c
implémentant les piles selon les deux SDC vues précédemment. Chacun commencerait par :

1 |#include "pile.h"

Lorsque l'on écrit un programme utilisant une pile, on doit inclure le header afin de pouvoir
faire référence au type de la structure et a ses opérations :

#include "pile.h"

int main ()
pile_t* p = pile_vide();
empiler (p, "bla");

free_pile(p);
return O;

}

© 00 O Uk Wi+

De plus, a la compilation, on peut choisir quelle structure concrete utilisée, simplement en
changeant le fichier C utilisé :

gcc main.c pile_tab.c -o prog_avec_tab
gcc main.c pile_chaine.c -o prog_avec_chaine

Le fait d’avoir séparé la SDA et la SDC fait que 'on peut facilement changer la SDC, car
seule la spécification importe. Le fichier main. ¢ reste identique car il utilise seulement l'interface
donnée par le header.

9 MP2I Pierre de Fermat 2025-2026

2. PILE

MP2I Pierre de Fermat 2025-2026 10

2. PILE

E Application

Voyons un exemple d’utilisation de la pile : les mots biens parenthésés.

Un mot sur 'alphabet { [, (,]1,) } est dit bien parenthésé si chaque parenthése ouvrante est
associée a une parenthese fermante correspondante de méme type qui la suit dans le mot.

Par exemple, ([1([])) est bien parenthésé, mais ([] et ([)] ne le sont pas.

On considere le probleme de décision Bien-Parenthésé :

Etant donné s = sps; . .. S, Un mot sur { [, (,],) }, s est-il bien parenthésé ?

Un algorithme qui apparait naturellement pour tester si un mot est bien parenthésé est celui
qui utilise une pile : lorsqu’on lit un symbole ouvrant on I'empile, et lorsqu’on lit un symbole
fermant, on vérifie qu’il correspond bien au sommet de la pile.

Exemple 5
Déterminer si le mot ([1([()[111()) est bien parenthésé.

Plus précisément :

Entrée(s) : s = s¢s1...5,-1 un mot sur { [, (,1,) }
Sortie(s) : “Oui” si le mot est bien parenthésé, “Non” sinon

1 P < pile_vide();
2 1+ 0;
3 tant que i < n faire
4 sis;=(ou s; =] alors
5 L empiler(P, s;);
sinon
si est_vide(P) alors
L retourner Non ;

9 sinon
10 b < dépiler(P);
11 si b et s; ne correspondent pas alors
12 L retourner Non ;
18 | i< i+ 1;

14 retourner est_vide(P);

Terminaison Le programme termine, car sa seule boucle while est en réalité une boucle for.

Complexité La complexité de 'algorithme est en O(n) car toutes les opérations des piles
sont en O(1) avec les implémentations vues précédemment.

11 MP2I Pierre de Fermat 2025-2026

2. PILE

Correction On veut montrer que ’algorithme renvoie Oui si et seulement si s est bien pa-
renthésé. Le principe de 'algorithme est que la pile P stocke des parentheses ouvrantes pour
lesquelles on n’a pas encore trouvé de parenthese fermante. Autrement dit, en lisant sq...s;_1

on a éliminé les parties bien-parenthésées et stocké le trop-plein de parentheses ouvrantes dans
P.

Cela nous pousse vers l'invariant de boucle suivant :
[: “s est bien-parenthésé < mot(P)s;S;11 ... S,_1 est bien-parenthésé”

avec mot(P) = xp_1...21Tg, OU z(est le sommet de P, z; I’élément sous le sommet, etc...

Montrons que la propriété ci-dessus est bien un invariant de boucle. On note Py, 1) les valeurs
de P et i apreés k tours de boucles. Les autres variables (s, n) sont constantes.
e Pour k =0, iy = 0et P est vide, donc mot(Fy) = ¢ (le mot vide). Ainsi, mot(Fy)s;,Sig+1 - - - Sn—1 =
s et la propriété I est trivialement vraie pour k = 0.

e Soit k € N tel que I(k) est vraie. On considere un k + 1 passage.
On a 1541 = 7, + 1, et on distinque deux cas :

Siy,
By
sest BP < mot(P;)s;, Siy+1---Sn—1 est BP (par HR)
< mot(Fy)s;, .. Sp—1 est BP (car dgiq =i + 1)
< mot(FPyyq) ... Sp—1 est BP (car mot(Pyy1) = mot(Py)s;,)
et donc la propriété est vraie a la fin du passage.

— Si sy, est ouvrante, alors : Py = , et donc mot(Py1) = mot(Fy)s;, . donc :

Sikt1

Sipt1

— Sinon, s;, est fermante. Sans perte de généralité, supposons que s;, vaut)’

— Si Py est vide, alors mot(P;) = ¢ et donc mot(Py)s;, ...s,—1 n'est pas bien-
parenthésé puisqu’il commence par une parenthese. Donc, par HR, s n’est pas
bien parenthésé, et 1’algorithme renvoie bien Non.

— Sinon : on note b le sommet de P,. On a : P, = Pb , et donc mot(Py) =
ke+1
mot(Py1)b.
Donc :

s est bien-parenthésé < mot(Py)s;, Si,+1- .- Sn—1 est bien-parenthésé
& mot(Pyyq)bs;, ...8,_1 est bien-parenthésé

Or, b est ouvrante, et s;, est fermante, donc mot(P;1)bs;, 54, , - .. Sp—1 est bien-
parenthésé si et seulement si les deux conditions suivantes sont réalisées :

— (mot(Py)
correspond a b (c’est a dire s;, =’ (7).

Sigi1

Sij4y - - - Sn—1 est bien-parenthésé ;

- Sik

Ainsi, si s;, correspond a b, on a bien
s est bien-parenthésé << mot(FPyi1)s;, 1 -+ Sn—1 est bien-parenthésé et I'in-

variant de boucle est bien préservé. Sinon, s n’est pas bien parenthésé (car il
contient [), et l'algorithme renvoie Non et est correct.

Nous avons donc montré que I est un IdB, et qu’en plus, si ’algorithme renvoie Non, alors
le mot de base n’est pas bien parenthésé.
En particulier, a la sortie de la boucle, ¢« = n et donc s est bien parenthésé si et seulement si
mot(P) l'est. Mais P ne contient que des parentheses ouvrantes : donc s est bien parenthésé
si et seulement si P est vide, ce qui correspond bien a la valeur renvoyée par ’algorithme.

MP2I Pierre de Fermat 2025-2026 12

3. FILE

3 File

La structure de file stocke des données selon le principe ”Dernier arrivé, dernier sorti”, ou
LILO (Last In Last Out), ou encore FIFO (First In First Out) Ainsi, les données sont lues
dans 'ordre ou elles sont ajoutées,

Remarque 2

Visuellement, c’est une file d’attente au supermarché!

Exemple 6

Voici un exemple d’utilisation d’une file :

A Structure de données abstraite

Une file représente une suite finie d’éléments de type [T], dont la taille peut varier. Une file
a une téte et une queue, et ses éléments sont rangés, de telle sorte que 1’on enfile les nouveaux
éléments a la queue de la file, et que I'on défile les éléments par la téte de la file. Ses opérations
sont :

— Créer une file vide : file_vide() ;

— Enfiler un nouvel élément x a la queue d’une file F' : enfiler(F, z);
— Défiler I’élément a la téte d’une file F' et le renvoyer : defiler(F');

— Déterminer si une file est vide : est_vide(F).

Exercice 4

Pour chaque opération, dire si ¢’est un accesseur, un transformateur ou un constructeur.

13 MP2I Pierre de Fermat 2025-2026

3. FILE

B Implémentation par liste chainée

On utilise presque les mémes structures que pour les piles, mais on doit stocker deux poin-

teurs : celui de la téte et celui de la queue :

© 00 3O Uk Wi+

typedef struct maillon {

T elem;

struct maillon* suiv; // de la tete vers la queue
} maillon_t;

typedef struct file_{
maillon_t* tete;
maillon_t* queue;

} file_t;

Attention, le sens des pointeurs va contre le sens de la file.

Exemple 7

Voici une file abstraite et le schéma qu’on aurait en mémoire avec une pile concrete par
liste chainée :

Pour créer une file vide et déterminer si une file est vide, on procede exactement comme

pour les piles :

© 00 3O Uk Wi+

file_t*x file_vide (){
file_t* f = malloc(sizeof(file_t));
f->tete = NULL;
f->queue = NULL;
}
bool est_file_vide(file_tx*x f){
return (f->tete == NULL); // ou bien: return (f->queue == NULL);
}

MP2] Pierre de Fermat 2025-2026 14

3. FILE

Enfilage FEnfiler un élément est un peu technique. Selon si la file était vide ou non, le schéma
est un peu différent. Dans les deux cas, on crée nouveau maillon qui devient la queue de la file,
mais si la file était vide alors ce nouveau maillon devient aussi la téte de file!

Dessinons les deux situations, en notant a chaque fois les liens qui sont ajoutés, supprimés,

modifiés :

0 O Ui Wi

On en déduit le code C suivant :

void enfiler (file_tx* f, T x){
maillon_t* anc_q = f->queue; // ancienne queue

// création de la nouvelle queue de file

maillon_t* nouv_q = malloc(sizeof(maillon_t));
nouv_q->elem = x;
nouv_q->suivant = NULL;

// mise a jour de la queue

f->queue = nouv_q;

if (anc_q == NULL){ //la file était vide: mettre & jour la tete
f->tete = nouv_q;

} else { // anc_q a maintenant un maillon suivant: nouv_q
anc_g->suiv = nouv_q

}

15 MP2I Pierre de Fermat 2025-2026

3. FILE

Défilage A nouveau, faisons des schémas pour étudier comment les différentes liaisons sont
modifiées lorsque 'on défile un élément.

On obtient le code C suivant :

1 |T defiler(file_tx*x f){

2 assert('est_file_vide(f));

3

4 maillon_t* anc_tete = f->fete; // ancienne tete
5 T res = anc_tete->elem;

6

7 maillon_t* nouv_tete = ancienne_tete->suivant;
8 f->tete = nouv_tete;

9

10 if (f->tete == NULL){ // la file est vide

11 f->queue = NULL;

12 }

13 return res;

14 |}

Exercice 5

Reprendre les deux fonctions précédentes si les pointeurs au sein de la chaine vont mainte-
nant de la queue vers la téte. Que se passe t-il 7

L’affichage et la libération de mémoire se font de maniere analogue a ce que 'on a fait pour
les piles.

MP2I Pierre de Fermat 2025-2026 16

—_

3. FILE

C Implémentation par tableau

Comme pour les piles, on peut implémenter une file en utilisant un tableau contenant les

valeurs de la file, de la téte vers la queue. Plus précisément, on utilise la structure suivante :

ST W N

#define Nmax 10000

typedef struct file {
int queue; //indice de la prochaine case a remplir si 1l'on enfile
int nb_elem; // nombre d'éléments dans la file
T tab[Nmax];

} file_t;

Dans une file [£ | de ce type, les cases utiles sont les cases d’indice avec 7 allant

de 1 & [£->nb_elem|. La valeur en queue de file est donc a la case |f->queue - 1], et la valeur

en tete de file est a la case ‘ f->queue - f->nb_elem ‘ Simulons 1’évolution d’une file implémentée
ainsi avec Npee = 5 ¢

On voit donc qu’en utilisant directement cette implémentation, on se heurte a un probleme :

la file peut devenir inutilisable alors qu’elle n’est pas pleine. On va donc travailler dans des
tableaux cycliques. Autrement dit, on considere que la case N, — 1 du tableau est collée a
la case 0. Ainsi, on pourra stocker la file a cheval sur la fin et le début du tableau. Par exemple :

Notons que cela revient a prendre les indices modulo N, .

O © 00O Uk Wi+

Pour créer une file vide, et déterminer si une file est vide :

file_t* file_vide \O{
file_t* f = malloc(sizeof(file_t));
f->nb_elem = 0;
f->queue = 0;
return f;

}

bool est_vide(file_tx* f){
return (f->nb_elem == 0);

}

17 MP2I Pierre de Fermat 2025-2026

3. FILE

L’opération pour enfiler est similaire a celle d’empilage de la pile, mais on travaille modulo

la taille du tableau :

ST W N

void enfiler (file_tx*x f, T x){
assert (f->nb_elem < Nmax);
f->tab[f->queue] = x;
f->queue = (f->queue + 1) % Nmax;
f->nb_elem++;

}

Pour défiler, il faut commencer par trouver 'indice de la case correspondant a la téte de

file :

ST W N

T defiler(file_t* f){
assert (!'est_vide (£f));
T res = f->tab[(Nmax + f->queue - f->nb_elem)’Nmax];
f->nb_elem--;
return res;

Exercice 6

On propose une variante de I'implémentation par tableau cyclique, ou I'on stocke un indice
de queue et un indice de tete :

#define Nmax 10000

typedef struct file {
int queue; //indice de la prochaine case & remplir si l'on enfile
int tete; // indice de la case a défiler
T tab[Nmax];

} file_t;

O U i W N~

Implémenter les opérations de file avec cette SDC. Que remarquez-vous ?

MP2I Pierre de Fermat 2025-2026 18

4. TABLEAU REDIMENSIONNABLE

4 Tableau redimensionnable

A Principe

Une limite des implémentations par tableau des piles et des files est que 1'on a une taille
limite a nos structures. On s’intéresse a I'implémentation d une structure que I’on appellera vec-
teur, ou les opérations sont celles des tableaux (lecture d’une case, écriture d’une case) et celles
d’une pile (ajouter ou supprimer un élément a la fin), sans limite de taille L'implémentation
sera facilement adaptable aux implémentations des piles et files par tableau.

L’idée est de prendre un tableau d’une taille arbitraire (4 dans le code ci-dessous), et de
redimensionner ce tableau a chaque fois qu’il est rempli.

1 |typedef struct vect{

2 T* tab; // éléments

3 int taille_max; // nombre de cases allouées pour tab
4 int nb_elem; // nombre de cases utilisées
5|} vect_t;

6

7 |vect_t* creer_vecteur (){

8 vect_t* v = malloc(sizeof (vect_t));

9 v->nb_elem = 0;

10 v->tab = malloc(4 * sizeof(T));

11 v->taille_max = 4;

12 return v;

13 |}

Lorsque l'on ajoute un élément a la fin du vecteur, s’il ne reste plus de place, i.e. si
|nb_elem == taille_max|, on alloue un nouveau tableau, plus grand, et on y recopie tous les
éléments.

Exercice 7

En décidant arbitrairement d’augmenter la taille de 10 a chaque fois qu’on réalloue, représenter
I’évolution du tableau si 'on ajoute les éléments 1, 2, 3, 4, 5, etc ... a partir d'un vecteur
vide. Méme question si I’'on double la taille a chaque fois qu’on réalloue.

En C, la fonction sert a réallouer de la mémoire. Par exemple :

1 |int* p = malloc(10 * sizeof (int));

3 |p = realloc(p, 15xsizeof (int));

Dans le code précédent, la derniere ligne désalloue les 10 cases int réservées a la ligne
d’au dessus, et alloue 15 nouvelles cases. Elle recopie dans les nouvelles cases le contenu des
anciennes. Cette opération prend un temps linéaire en I'ancienne taille mémoire car elle doit
recopier chaque élément un a un.

On peut donc implémenter I'opération d’ajout comme suit :

void ajouter(vect_tx*x v, T x){

// redimensionner si nécessaire

if (v->nb_elem == v->taille_max){
int nouvelle_taille = 777;
v->tab = realloc(v->tab, nouvelle_taille);
v->taille_max = nouvelle_taille;

}

v->tab[v->nb_elem] = x;

v->nb_elem++;

O © 00O Uk Wi+

—_

19 MP2I Pierre de Fermat 2025-2026

4. TABLEAU REDIMENSIONNABLE

B Performances : analyse de complexité amortie

Il reste a choisir de combien augmenter la taille lorsque 1’on redimensionne. Notons que
dans tous les cas, la complexité de 'ajout dans un vecteur de taille n sera en 2(n) car dans
le pire cas (c’est a dire en cas de redimensionnement), il faut recopier tous les éléments. Nous
allons étudier la complexité amortie de 'ajout : si 'on effectue n ajouts depuis un vecteur
vide, en notant le cout total C,, on appellera cott amorti de I'ajout la valeur moyenne %
La complexité amortie d’une opération permet donc d’évaluer son colit moyenné sur un grand
nombre d’utilisations. L’idée est que méme si certains cas peuvent avoir une tres mauvaise
complexité, dans un programme long, ils arriveront rarement et seront compensés par un grand

nombre d’opérations rapides.

Premiere idée A chaque ajout, on augmente de 1 la taille du tableau. Alors, a partir du
premier redimensionnement, chaque ajout cause un redimensionnement et cotte ©(7) ou i est la
taille du vecteur au moment de ’ajout. Ainsi, si I'on ajoute n éléments d’affilée, la complexité
totale est en ©(n?).

Deuxieéme idée Plutot que de réallouer un tableau avec une seule place de plus, on fixe
K € N* et on alloue le tableau par blocs de K cases : Initialement, le tableau possede K cases,
puis lorsque 'on doit ajouter un K + 1-éme élément, on réalloue un tableau de taille 2K, puis
de taille 3K, etc...

Ainsi, si 'on fait plusieurs ajouts, alors les K premiers se feront en temps constant, puis le
K + 1-eme en temps K + 1, puis les K — 1 suivants en temps constant, puis le 2K + 1-eme en
temps 2K + 1, etc...

Le cout total combiné de n ajouts dans un vecteur vide est de I'ordre de :

Z?:_()l(z' + 1 si ¢ est multiple de K, 1 sinon)

n—1 n—1
= Z 1+ Z(z si % multiple de K, 0 sinon)
i=0 =0
n—1 nT_lJ
-Siey
=0 7=0
nZl(n=1
_ p KURICR
= 0O(n?

Donc, en moyenne, un ajout prend de 'ordre de O(n), comme pour la premiere idée. Notons
que la constante se cachant dans le O est beaucoup plus faible.

Troiseme idée On double la taille du tableau a chaque fois. Si ’on calcule a nouveau le cotit
total de n ajouts successifs, on obtient :

S (i + 1 si i puissance de 2, 1 sinon)

i=0
n—1 [ogy(n—1)]

S HEED S
i=0 j=0

< A 2Uogz(n))+1

< 3n

Dong, le cout moyen d’un ajout est constant! On dit que I’ajout a un cout amorti O(1).

MP2I Pierre de Fermat 2025-2026 20

4. TABLEAU REDIMENSIONNABLE

Notons que ce faible cotlit en temps n’est pas gratuit : cette méthode nécessite de réserver
jusqu’au double de la taille réelle du tableau. Le cout spatial est élevé, si I'on programme
sur un systeme ou la mémoire est précieuse, comme un micro-ordinateur, il faudra faire un
compromis entre le cotuit temporel et le cout spatial.

Dans I'implémentation classique C de Python, c’est ce systeme de tableaux redimension-
nables qui est utilisé pour implémenter les listes. Si 'on inspecte la taille mémoire d'une liste
apres plusieurs ajouts, on obtient le graphe suivant :

—— Taille de L aprés k ajouts L’
=== 1125k
500000 - K
400000 1
300000 -
200000 -
100000
0 —
T T T T T T
0 100000 200000 300000 400000 500000
k

FIGURE 1 — Taille d’une liste Python L apres k ajouts.

On voit qu’a chaque fois qu’'un ajout dépasse la taille mémoire, la liste est réallouée en
multipliant la taille par 1.125. On peut montrer avec les méme calculs que précédemment que
ceci donne des ajouts en temps amorti constant.

Exercice 8

Imaginer d’autres stratégies de redimensionnement (multiplier la taille par un réel a autre
que 2, mettre la taille au carré, multiplier la taille par sa racine, etc...), et étudier leurs
performances du point de vue du temps et de 'espace.

21 MP2I Pierre de Fermat 2025-2026

4. TABLEAU REDIMENSIONNABLE

MP2I Pierre de Fermat 2025-2026 22

5. DICTIONNAIRES

5 Dictionnaires

Les dictionnaires font partie des structures de données les plus importantes en informatique.
Un dictionnaire est comme un tableau, indexé par des éléments d’un type quelconque plutot
que par des entiers consécutifs.

Exemple 8

Python propose un type natif de dictionnaires, que l'on peut manipuler avec la méme
syntaxe que les tableaux :

1 |cri = dict() # associe a chaque animal son cri
2 |cri["chat"] = "miaou"

3 |cri["chien"] = "waf"

4 |cri["carpe"] = ""

)

6 |s = cri["chat"]

On fixe K et V deux ensembles. Un dictionnaire stocke une fonction de K dans V partielle
(c’est & dire qu’elle n’est pas forcément définie sur tout K'). Autrement dit, un dictionnaire
stocke des couples (k,v) € K x V, oul'on appelle k la clé et v la valeur, tels que pour un k € K
donné, il y a au plus un couple dans le dictionnaire dont k est la clé. Un dictionnaire permet
de chercher la valeur associée a une clé, et de modifier cette valeur. On considere les opérations
suivantes :

— dict() crée un dictionnaire vide ;
— ajout(D, k,v) associe la valeur v a la clé k dans le dictionnaire D.
— contient(D, k) détermine si la clé k est dans le dictionnaire D.

— recherche(D, k) renvoie la valeur associée a la clé k dans le dictionnaire D. k doit étre
une clé valable.

— supprime(D, k) supprime la clé k du dictionnaire D, ainsi que la valeur qui y était
associée.

Lorsque 'on associe une valeur v € V' a une clé k € K, si k est déja dans le dictionnaire,
alors on écrase sa valeur associée pour y écrire v.

Exercice 9

Donner le type de chaque opération (Constructeur, Accesseur, Transformateur).

En pseudo-code, on utilisera parfois une notation proche des tableaux, comme celle de
Python : si D est un dictionnaire et k une clé, alors DIk] est la valeur associée a k dans D, i.e.
recherche(D, k). De méme, écrire D[k| <— v revient a écrire ajout(D, k, v).

23 MP2I Pierre de Fermat 2025-2026

5. DICTIONNAIRES

A Exemples d’applications des dictionnaires

Nombre d’occurrences, élément majoritaire Etant donné un tableau 7' d’éléments, on
se demande quel est ’élément majoritaire, i.e. I’élément ayant le plus d’occurrences dans T'.
Un premier algorithme naif consiste a regarder, pour chaque case, le nombre de cases qui
contiennent la méme valeur, et de garder en mémoire la meilleure case vue jusqu’a maintenant, :

Algorithme 2 : majoritaire(7,n)
Entrée(s) : T tableau de taille n
Sortie(s) : « € T tel que {i € [0,n — 1] | T[i]] = x} est de cardinal maximal

1 T, < Rien // élément le plus fréquent vu jusqu’a maintenant
2 o < 0 // nombre d’occurrences de z,, dans T

3 pour : =0 a n — 1 faire

4 04 0// nombre d’occurrences de T[i] dans T

5 pour j =0 a n — 1 faire

6 si T'[i| = T'[j] alors

7 L 0+ o0+ 1;

8 si 0 > o, alors

9 Om 4— 0;

10 T < TVi];

11 retourner z,,

La complexité de cet algorithme est O(n?). En commengant par trier le tableau, on pourrait
améliorer cette complexité en O(nlogn).

Exercice 10

Expliquer comment trouver un élément majoritaire dans un tableau trié plus efficacement
qu’avec l'algorithme majoritaire(7,n).

Avec un dictionnaire, on peut trouver une solution encore plus efficace. L’idée est de créer
un dictionnaire dont les clés sont les éléments du tableau, tel que la valeur associée a un élément
est son nombre d’occurrences dans 7. On commence par remplir ce dictionnaire en lisant une
fois le tableau, puis on regarde la clé du dictionnaire ayant la plus grande valeur :

MP2] Pierre de Fermat 2025-2026 24

5. DICTIONNAIRES

Algorithme 3 : Elément majoritaire

NV VU

9]

© 00 N o

10
11

12

Entrée(s) : T tableau de taille n
Sortie(s) : z € T tel que {i € [0,n — 1] | T'[i] = z} est de cardinal maximal
// Calcul du dictionnaire des occurrences
O < Dictionnaire vide // x — nombre d’occurrences de =
pour i =0 a n — 1 faire
si T[i] n’est pas une clé de O alors
| O[T[i]} + 0;
O[T[i]] + O[T[i]] + 1;
// Recherche de la clé de valeur maximale
Tm < Rien ;
O < 0;
pour z clé de D faire
si O[z] > oy, alors
Om — 0;
Ty < T

retourner z,,

de

Alors, le en notant A(i) le cotut de I'ajout dans un dictionnaire a i éléments et R(i) le cott
la recherche dans un dictionnaire a ¢ éléments, le cotit total de 1’algorithme est :

n—

Z(R(z’) + A(i)) + nR(n)

=0

Nous allons voir une implémentation des dictionnaires ou toutes les opérations sont en

temps constant O(1)[f] L’algorithme précédent est alors en O(n) : on a gagné un facteur n
par rapport a ’algorithme naif!

1. En moyenne.

25 MP2I Pierre de Fermat 2025-2026

[y

— =

5. DICTIONNAIRES

Implémentation par liste chainée On commence par une implémentation plus naive, ou
la recherche sera en complexité linéaire.

L’idée de cette implémentation est d’avoir une liste doublement chainée dont les maillons

contiennent des couples (k,v) clé-valeur :

O © 00O Uk W

typedef struct maillon{
K key;
V value;
struct maillon* suiv;
struct maillon* prec;
} maillon_t;

typedef struct dict{
maillon_t* tete;
} dict_t;

Pour faire une recherche, une modification ou une suppression, le principe est le méme :

faire une recherche linéaire en parcourant les maillons un a un. Par exemple :

— O © 00O ULk Wi+

/* Stocke dans *result la valeur associée a K dans d,
et renvoie un booléen indiquant si K a été trouvée x/
bool recherche(dict_t* d, K key, Vx result){

for (maillon_t* m = d->tete; m !'= NULL; m = m->suiv){
if (m->key == K){
*result = m->value;

return true;
}
}
return false;

}

MP2I Pierre de Fermat 2025-2026 26

6. DICTIONNAIRES : TABLES DE HACHAGE

6 Dictionnaires : tables de hachage

Les dictionnaires sont une généralisation des tableaux. Si I'ensemble K des clés est de la

forme [0,m — 1] pour un m € N, alors un dictionnaire ayant K comme clés est presque
exactement un tableau. La différence est que pour un dictionnaire, il faut pouvoir indiquer si
une case est utilisée ou pas, i.e. si I'indice de la case est présent dans le dictionnaire ou pas.
Pour représenter un tel dictionnaire, on pourrait donc utiliser un tableau dans lequel on stocke
des éléments de I'ensemble V' U {NIL}, ot NIL est un élément particulier signifiant “pas de
valeur”.
Supposons maintenant que ’ensemble des clés K est fini de cardinal m, mais que ce n’est
pas forcément un intervalle de la forme [0,m — 1] (par exemple I’ensemble des prénoms de la
classe). Si I'on dispose d’une fonction bijective de numérotation f : K — [0,m — 1], on peut
implémenter un dictionnaire en utilisant un tableau 7" comme décrit au dessus, en stockant
chaque clé k dans la case T[i] avec i = f(k).

— Création d’un dictionnaire vide : renvoyer un tableau 7" de taille m, avec T'[i] = NIL
pour i € [0,m — 1].

— Eeriture d’un couple (k, v) : Effectuer T[f (k)] < v.

— Recherche de la valeur associée a k : Renvoyer T'[f(k)].

— Suppression de la clé k : Effectuer T'[f (k)] < NIL.

Cependant, cette solution ne fonctionne plus des que l'ensemble K des clés possibles est
trop grand. Prenons par exemple comme clés les chaines de caracteres de taille au plus 10.
En utilisant le code ASCII, on peut voir une telle chaine comme un entier de 10 chiffres en
base 256, ce qui permettrait de numéroter I’ensemble des chaines. On pourrait implémenter un
dictionnaire comme expliqué plus haut, mais cela nécessiterait de réserver un tableau de taille
2560 ~ 10?4, alors qu’en pratique seul une infime fraction du tableau serait réellement utile...

Le principe des tables de hachage est de ramener n’importe quel ensemble de clé a un
ensemble de la forme [0, m — 1] pour un m € N, avec m raisonnablement petit.

Définition 4

Soit K un ensemble de clés, et m € N*. Une fonction de hachage est une fonction h : K —
[0,m — 1] pas forcément bijective.

Pour k € K, on appelle h(k) le hash de k.

Si h est une fonction de hachage a valeurs dans [0, m — 1], alors on peut implémenter un
dictionnaire a clés dans K par un tableau de taille m. Pour insérer, modifier ou supprimer
une clé k € K donnée, on calcule ¢ = h(k), et on regarde a la i-¢me case du tableau. On
appelle un tel tableau une table de hachage.

Exemple 9

Soit K l’ensemble des mots sur ’alphabet a, b, ..., z. On considere une partie de jeu
a plusieurs joueurs. On voudrait représenter le résultat de la partie par un dictionnaire qui
a chaque joueur associe son score.

On considere la fonction de hachage hg : K — [0,25] qui a chaque chaine de caractere
associe la premiere lettre de son prénom (vu comme un entier entre 0 et 25). Cette fonction
permet d’'implémenter une table de hachage basique a 25 cases. Par exemple, pour les clés
suivantes :

adi, guigui,max, oli

27 MP2I Pierre de Fermat 2025-2026

6. DICTIONNAIRES : TABLES DE HACHAGE

On obtiendrait la table de hachage suivante :

Exercice 11

On prend maintenant comme fonction de hachage

hs(k) = Z x mod 5

x lettre de k

(On considere toujours que @ = 0,b = 1,...,z = 25). Avec le méme ensemble de clés
qu’au dessus, représenter la nouvelle table de hachage :

On peut donc se retrouver dans une situation ou deux clés sont hachées vers la méme valeur.
En fait, des que la taille m de la table est strictement inférieure a |K|, le lemme des tiroirs dit
que l'on trouvera forcément deux clés ayant le méme hash, car on n’aura pas injectivité de la
fonction de hachage.

Définition 5

Soit h : K — [0, m — 1] une fonction de hachage et k # k' € K. On dit que k et k' forment
une collision si h(k) = h(k')

De plus, si l'on reprend la premiere fonction de hachage, celle qui prend seulement la
premiere lettre du prénom, on remarque que peu de prénoms commencent par k, w, X, y, z
par rapport aux autres lettres. Donc, on est non-seulement sur d’avoir des collisions, mais on
sait méme que certaines cases seront tres demandées, et d’autres pas du tout.

On est donc confrontés a deux problemes :

— Que faire en cas de collision ?

— Comment choisir une fonction de hachage qui évite le plus possible les collisions, et les
répartit le mieux possible ?

On voudrait idéalement que la valeur de hachage fabriquée par la fonction soit “aléatoire”,
c’est a dire qu'on ne puisse pas a priori prévoir son comportement global. Si on reprend la
deuxieme fonction vue en exemple, qui fait la somme des lettres et prend le résultat modulo m,
on peut imaginer qu’il n’y aura pas de case privilégiée : a priori, il n’y a pas de raison particuliere
pour que beaucoup de prénoms aient les sommes de leurs lettres congrues a 3 modulo 19.

MP2I Pierre de Fermat 2025-2026 28

6. DICTIONNAIRES : TABLES DE HACHAGE

Dans la suite, on considere 7" un tableau de taille m utilisé comme table de hachage pour

un dictionnaire. On note {ko,...,k,—1} les clés utilisées, n est donc la taille du dictionnaire
(ne pas confondre la taille du dictionnaire et la taille du tableau utilisé pour implémenter le
dictionnaire).

Il existe deux classes de méthodes pour résoudre les collisions dans une table de hachage :

— Les méthodes de résolution par chainage : les éléments dont les clés ont la méme valeur
par la fonction de hachage sont rangés dans une seule liste chainée. On parle de hachage
indirect.

— Les méthodes de résolution par calcul : Lorsqu’il y a une collision, on calcule un nouvel
emplacement ou stocker la nouvelle clé. On parle de hachage direct.

Dans ce cours, on se contentera d’étudier la gestion par chainage.

A Gestion des collisions par chainage

Le principe est de stocker dans chaque case de la table de hachage une liste chainée de
tous les éléments qui y ont été mis par hachage. Ainsi, T'[i] contiendra la liste chainée de toutes
les clés k € {ko,...,kn_1} telles que h(k) = i. Les cases de T sont appelées des alvéoles (et
parfois buckets en anglais).

On se ramene donc a la manipulation de dictionnaires par liste chainée étudiée au début
de cette section. Pour insérer, supprimer, modifier ou rechercher dans une table de hachage, on
calcule le hash de la clé k£ a traiter notons le i, et on effectue I'opération sur la liste chainée
stockée dans I'alvéole ¢ du tableau.

On implémente donc les opérations comme suit :

— Création d’'un dictionnaire vide : Renvoyer un tableau T de taille m, avec chaque case
contenant une liste vide. Les maillons de ces listes stockeront des couples clé-valeur.

— Ecriture d'un couple (k,v) :

Algorithme 4 : Ecriture dans une table de hachage avec chainage

Entrée(s) : T table de hachage, h fonction de hachage a utiliser, (k,v) € K x V
couple a insérer

i < h(k);
m < recherche(T[i|,k) // Maillon contenant la clé k
si m = NULL alors

L ajouter(T[i], (k, v));

sinon
L m.v = v;

AR OW N

(=21

— Recherche, Suppression : méme principe

Exemple 10

On prend m = 9, et on considere les clés kg, ..., ks et leurs valeurs de hachage :

clé]{30]{71]{52 kg k‘4]{55 kﬁ]{37 kg k‘g]{310]{311 k’lg
hash : 3 1 4 1 4 1 5 9 2 6 5 3 5

Alors la table de hachage ressemblera a :

29 MP2I Pierre de Fermat 2025-2026

6. DICTIONNAIRES : TABLES DE HACHAGE

Le pire cas pour ces opérations est atteint lorsque toutes les associations sont stockées dans
la méme alvéole. La complexité est alors en O(n). En pratique, lorsque 1'on choisit une bonne
fonction de hachage, les clés sont bien réparties, et le cotit moyen des différentes opérations est
O(1+a), ot a = I est le taux de remplissage, i.e. la taille moyenne des listes chainées stockées
dans les alvéoles.

Si 'on peut estimer a I'avance le nombre maximal n de clés que contiendra le dictionnaire,
on peut fixer m = n a la création et donc avoir des opérations en O(1) en moyenne. On peut
également redimensionner le dictionnaire au cours de I'exécution, afin de controler a.. Le taux
de remplissage représente un compromsis temps-mémoire : Si « est tres petit, alors la table
est peu remplie, donc il y a peu de collisions et les opérations sont rapides, mais la mémoire
utilisée est tres supérieure a I’espace nécessaire. Si « est grand, alors le tableau est tres rempli,
avec de nombreuses collisions, et les opérations sont lentes, mais le gaspillage de mémoire est
minime.

En pratique, en redimensionnant et en gardant a borné convenablement, on obtient des
bonnes performances en mémoire et en temps. Dans la plupart des cas pratiques, on peut
considérer que les tables de hachage ont des complexités en temps constant : c¢’est une struc-
ture extréemement efficace !

Par exemple, dans I'implémentation en C de Python, les dictionnaires sont implémentés
par des tables de hachage avec gestion des collisions par chainage. Si on regarde dans le code
sourceﬂ on peut voir que la taille des tables n’est pas fixée : elle est de 16 initialement, et le
taux de remplissage « est gardé entre 10% et 50%, en redimensionnant la table lorsqu’elle est
trop ou pas assez remplie.

2. github.com/python/cpython/blob/main/Python/hashtable.c

MP2I Pierre de Fermat 2025-2026 30

https://github.com/python/cpython/blob/main/Python/hashtable.c

6. DICTIONNAIRES : TABLES DE HACHAGE

B Choix d’une fonction de hachage

Exemple 11

Si K est un ensemble de chaines de caracteres, on peut considérer la fonction :

-1
hik=koki. ki1~ k256 modm
i=0
Autrement dit, on considere, comme évoqué plus haut, que k représente un entier en
base 256, et on prend le résultat modulo m.

Un inconvénient de cette fonction est que si m est pair, alors k et h(k) auront toujours
la méme parité. Par exemple, les mots finissant par ’e’ seront toujours hachés vers les cases
d’indice impair, car 'e’ vaut 101 en ASCII. De maniere plus générale, si m est multiple de 2P,
alors les p derniers bits de h(k) seront les mémes que k.

On souhaite trouver des fonctions de hachage étant “assez aléatoires”. De bons criteres (liste
non exhaustive) pour une fonction de hachage sont :

— Peu de collisions, et difficile de les trouver
— Fait intervenir tous les bits de la représentation de maniere équitable
— Temps d’exécution court

Il existe de tres nombreux algorithmes de hachageﬂ dont certains servent plutot en crypto-
graphie que pour les tables de hachage.

La méthode de I'exemple précédent, consistant a considérer la clé comme un entier, et a
prendre le reste modulo m, s’appelle méthode par division.

3. en.wikipedia.org/wiki/ List_of_hash_functions

31 MP2I Pierre de Fermat 2025-2026

https://en.wikipedia.org/wiki/List_of_hash_functions

6. DICTIONNAIRES : TABLES DE HACHAGE

C Opérations additionnelles

On peut vouloir munir la structure abstraite de dictionnaire d’opérations supplémentaires.
Par exemple, si 'ensemble K des clés est muni d’un ordre, étant donné une borne ky € K,
on pourrait avoir une opération permettant d’obtenir la liste des couples (k,v) € D tels que
k < k.

De maniere plus générale, on voudrait étre capable d’¢térer sur les valeurs d’un dictionnaire

D, soit dans un ordre arbitraire, soit selon un ordre précis défini sur K, soit par ordre d’insertion
des clés-valeurs, etc....
L’implémentation des dictionnaires par liste chainée permet de réaliser facilement les deux
premieres opérations, car la structure chainée permet naturellement de parcourir les entrées du
dictionnaire une a une. Cependant, pour les tables de hachage, la position des couples dans
la table n’est pas corrélée a 'ordre d’insertion, ou a un quelconque ordre sur K. Si 'on veut
chercher une clé vérifiant une certaine propriété mais sans connaitre sa valeur, on doit vérifier
chaque alvéole une par une :

Algorithme 5 : cle_inferieure(T k)

Entrée(s) : T table de hachage par chainage a m alvéoles, ky valeur limite
Entrée(s) : Une clé de T plus petite que kg, ou NIL s’il n’y en a pas

1 pour i =0 a m — 1 faire

2 m <+ tete(Ti]);

3 tant que m # NULL faire

4 si m.k < kg alors

5 L retourner k

6 m < suivant(m);

7 retourner NIL

La boucle extérieure permet d’itérer sur les alvéoles, et la boucle intérieure permet de par-
courir Ialvéole T7i].

Ce schéma algorithmique, consistant a parcourir chaque liste chainée de la table, permet de
répondre a de nombreuses requétes : afficher le contenu du dictionnaire, renvoyer la liste des
clés, la liste des valeurs, copier un dictionnaire, etc...

En utilisant d’autres types de structures, les arbres (voir chapitre 8), on peut obtenir des
dictionnaires ou les couples (clé, valeur) sont stockés d’une maniere directement liée a I’ordre
des clés. Avec ces implémentations, certaines requétes (trouver la clé minimale, renvoyer les
clés dans un certain intervalle), se font avec une bien meilleure complexité que les tables de
hachage.

MP2I Pierre de Fermat 2025-2026 32

	Introduction
	Pile
	File
	Tableau redimensionnable
	Dictionnaires
	Dictionnaires: tables de hachage

