
1. INTRODUCTION

1 Introduction

Nous avons déjà rencontré deux structures de données assez simples :

— Les tableaux

— Les structs C

Ces deux types d’objets permettent de stocker des données d’une manière structurée :
les tableaux comme les structs sont munis d’opérations bien spécifiques pour écrire ou lire des
valeurs : accès à une case, à un attribut...

Définition 1

La spécification d’une structure de données abstraite est constituée de :

— son type/format, c’est à dire le genre d’informations que l’on peut enregistrer ;

— ses opérations, c’est à dire la manière dont on interagit avec la structure, la manière
dont on y lit, écrit et modifie des données.

Exemple 1

Un tableau d’éléments de type T est une structure de données abstraite. C’est une suite
finie d’éléments de type T , et ses opérations sont :

— creer_tab(n) : crée et renvoie un tableau d’une taille n

— ecrire(t, i, x) : écrit x à la i-ème case du tableau t

— lire(t, i) : renvoie la i-ème case du tableau t

— taille(t) : envoie la taille du tableau t

En C, si l’on utilise directement les tableaux fournis par le langage, comme on l’a fait jusqu’à
maintenant, on ne peut pas obtenir la taille d’un tableau donné, on doit s’en rappeler dans une
variable à part. On peut néanmoins implémenter notre propre version des tableaux, en utilisant
les structs :

1 struct tableau{

2 int taille;

3 float* valeurs;

4 };

5 typedef struct tableau tableau_t;

Ensuite, on peut implémenter les opérations données par la spécification des tableaux :

1 tableau_t* creer_tab(int taille){

2 tableau_t* res = malloc(sizeof(tableau_t));

3 res ->taille = taille;

4
5 res ->valeurs = malloc(taille*sizeof(float));

6 for (int i = 0; i < taille; i++){

7 res ->valeurs[i] = 0;

8 }

9 }

(On choisit arbitrairement de mettre tous les éléments à 0 initialement.)

1 void ecrire(struct tableau_t* t, int i, float x){

2 assert (0 <= i && i < t->taille);

3 t->valeurs[i] = x;

4 }

1/32 MP2I Pierre de Fermat 2025-2026

1. INTRODUCTION

On remarque qu’implémenter nous même la structure de tableau permet de rajouter une
couche de sécurité : on vérifie systématiquement qu’on accède bien à une case valide du tableau.

1 float lire(struct tableau_t* t, int i){

2 assert (0 <= i && i < t->taille);

3 return t->valeurs[i];

4 }

1 int taille(struct tableau_t* t){

2 return t->taille;

3 }

En ayant écrit les fonction précédentes, on a implémenté la structure de données abstraite
appelée “tableau”. On dit que l’on a implémenté une structure de données concrètes.

Dans le reste du programme, peut alors manipuler les tableaux de la manière suivante :

1 void echanger(tableau_t* t, int i, int j){

2 float x = lire(t, i);

3 float y = lire(t, j);

4 ecrire(t, i, y);

5 ecrire(t, j, i);

6 }

7
8 int main (){

9 tableau_t* t = creer_tab (15);

10 printf("Tableau cr é é, de taille %d\n", taille(t);

11 ecrire(t, 7, 0.25);

12 ecrire(t, 2, 11.5);

13 echanger(t, 2, 7);

14 }

Notons que le code ci-dessus fonctionnerait peu importe comment est implémenté le type
tableau_t , du moment qu’il existe et que les quatre opérations existent aussi : on a seulement
besoin de la spécification de la SDA de tableau.

Définition 2

Une structure de données concrète est l’implémentation d’une structure de données
abstraite.

Dans un programme, lorsque l’on implémente une structure de données, on prend le point
de vue de la SDC : on choisit une implémentation, on crée les opérations concrètes. Cependant,
lorsque l’on utilise une structure de données dans du code, on considère la structure abstraite.

Par exemple, avec la structure de tableaux implémentée plus haut, on pourrait uniquement
utiliser les 4 opérations de la spécification :

1 tableau_t* t_1 = creer_tableau (5); // VALIDE

2 tableau_t* t_2 = malloc(sizeof(tableau_t)); // INVALIDE

3
4 float x = lire(t_1 , 2); // VALIDE

5 float y = t_1 ->valeurs [2]; // INVALIDE

MP2I Pierre de Fermat 2025-2026 2/32

1. INTRODUCTION

En pratique, il sera courant d’implémenter une structure de données en écrivant un couple
de fichiers .h/.c. Le fichier header ne contient que les déclarations, y compris pour la structure,
qui est déclarée sans remplir les attributs :

1 typedef struct tableau tableau_t;

2
3 // Cr ée un tableau de taille `taille ` non initialis é

4 tableau_t* creer_tab(int taille);

5
6 // Renvoie la case i de t. Pr é condition: i est un indice valide

7 float lire(struct tableau_t* t, int i);

8
9 // Stocke x dans la case i de t. Pr é condition: i est un indice valide

10 void ecrire(struct tableau_t* t, int i, float x);

11
12 // Renvoie le nombre de cases de t

13 int taille(struct tableau_t* t);

Le fichier C contiendra les définitions de la structure et des fonctions. Ainsi, les fichiers C
qui utiliseront la structure n’auront aucun moyen d’accéder aux attributs de la structure, car
ils n’ont accès qu’au fichier header. On parle d’utilisation en bôıte noire, car on utilise la
structure sans connâıtre son fonctionnement interne.

La documentation d’une structure de données concrète est très importante, car c’est elle qui
explique à l’utilisateur comment utiliser les différentes opérations. Autrement dit, la documen-
tation est la spécification. Plus que jamais, lorsque l’on implémente des structures de données,
on doit commenter le code.

Définition 3

Dans la suite, on distinguera trois familles d’opérations possibles pour les SDA :

— Les constructeurs, qui servent à créer et initialiser une structure

— Les accesseurs, qui permettent de lire une information dans la structure

— Les transformateurs, qui permettent de modifier la structure : en changeant une
valeur, en ajoutant ou supprimant un élément, etc...

Certaines opérations peuvent être dans deux (ou plus) familles à la fois.

Par exemple pour la SDA de tableau :

— creer_tab est un constructeur ;

— lire est un accesseur ;

— ecrire est un transformateur ;

— taille est un accesseur.

On pourrait imaginer une cinquième opération, copie(t) qui renvoie une copie du tableau
t : c’est à la fois un constructeur ET un accesseur.

3/32 MP2I Pierre de Fermat 2025-2026

2. PILE

Destructeur Lorsque l’on crée une SDC, on rajoute parfois un quatrième type d’opérations,
les destructeurs, qui servent à détruire une structure et libérer toutes les ressources qu’elle
utilisait.
On pourrait rajouter un destructeur free_tab aux tableaux comme suit :

1 void free_tab(struct tableau* t){

2 free(t->valeurs);

3 free(t);

4 }

Dans la suite du chapitre, on fixe T un type, et on considèrera des structures permettant de
stocker des éléments de ce type. On omettra généralement les destructeurs dans la description
des SDA, mais il faudra systématiquement penser à les programmer pour les SDC !

2 Pile

Une pile est une structure de données se comportant comme une pile d’assiette : on peut
enlever l’assiette du dessus, ajouter une assiette au sommet de la pile, mais il est difficile
d’insérer ou de retirer une assiette au milieu.

Cette structure fonctionne donc selon le principe “Dernier arrivé, premier sorti”, ou LIFO
(Last In First Out) : la dernière donnée que l’on ajoute sera toujours la première donnée que
l’on devra retirer : c’est le sommet de la pile. Inversement, la première valeur que l’on ajoute
dans une pile ne pourra être lue qu’une fois que toutes les valeurs suivantes ont été enlevées :
c’est la base de la pile.

Exemple 2

Voici un exemple d’utilisation d’une pile :

A Structure de données abstraite

Une pile représente une suite finie d’éléments de type T , dont la taille peut varier. Ses
opérations sont :

— pile vide() crée une nouvelle pile vide (Constructeur) ;

— empiler(P, x) ajoute un nouvel élément x sur le sommet de la pile P (Transformateur) ;

— depiler(P) enlève le sommet de la pile, et le renvoie (Transformateur et Accesseur) ;

— est vide(P) détermine si la pile P est vide (Accesseur).

Remarque 1

Dans certaines définitions, on a deux opérations séparées pour lire le sommet de pile et pour
le supprimer. Ici, l’opération de dépilage est à la fois un accesseur et un transformateur.

MP2I Pierre de Fermat 2025-2026 4/32

2. PILE

Exercice 1

Exécuter l’algorithme suivant sur le tableau T = [3, 1, 4, 1, 5] : que fait-il ?

Algorithme 1 : ? ? ?

Entrée(s) : T un tableau de taille n
Sortie(s) : ? ? ?

1 P ← pile vide();
2 pour i = 0 à n− 1 faire
3 empiler(P, T [i]);

4 i← 0;
5 tant que non est vide(P) faire
6 T [i]← depiler(P);
7 i← i+ 1;

B Implémentation par tableau

Pour commencer, on s’autorise à avoir une taille limite pour la pile. On se fixe Nmax un
entier, et on implémente une pile avec un tableau de taille Nmax.

Considérons la structure suivante :

1 #define Nmax 10000

2 struct pile{

3 int nb_elem;

4 T tab[Nmax];

5 };

6 typedef struct pile pile_t;

Le principe de cette implémentation est que pour une pile p , seuls les p->nb_elem premiers

éléments de p->tab ont un sens, et les cases d’indice p->nb_elem et au-delà peuvent contenir

n’importe quoi. La case p->tab[0] contient la base de la pile, et p->tab[p->nb_elem-1] contient
le sommet de la pile.

Exemple 3

Considérons une pile initialement vide, et dessinons la en tant que SDA et que SDC après
quelques opérations.

L’implémentation des fonctions pile_vide et est_vide sont assez élémentaires vu la struc-
ture :

1 pile_t* pile_vide (){

2 pile_t* p = malloc(sizeof(pile_t));

3 p->nb_elem = 0;

4 return p;

5 }

6
7 /* Lib ère la mé moire allou ée pour p (destructeur) */

8 void free_pile(pile_t* p){

9 free(p);

10 }

11
12 bool est_vide(pile_t* p){

13 return (p->nb_elem == 0);

14 }

5/32 MP2I Pierre de Fermat 2025-2026

2. PILE

Empilage, dépilage Pour empiler, on devra écrire dans la case p->tab[p->nb_elem] et incrémenter
le nombre d’éléments. Pour dépiler, c’est l’inverse :

1 void empiler(pile_t* p, T x){

2 assert(p->nb_elem < Nmax); // impossible d'empiler sur une pile pleine

3 p->tab[p->nb_elem] = x;

4 p->nb_elem ++;

5 }

6
7 T depiler(pile_t* p){

8 assert (! est_vide(p)); // impossible de dé piler une pile vide

9 T res = p->tab[p->nb_elem -1];

10 p->nb_elem --;

11 return res;

12 }

Toutes ces opérations ont une complexité O(1).

C Implémentation par liste châınée

L’implémentation basique par tableau est efficace, mais oblige les piles à avoir une taille
limite. L’implémentation par liste châınée permet d’éviter cette contrainte. Une liste châınée
est une structure composée de maillons reliés les uns aux autres en une unique châıne. Chaque
maillon contient un élément ainsi qu’une référence vers le maillon suivant. On stocke les éléments
dans l’ordre du sommet vers la base :

1 typedef struct maillon {

2 T elem;

3 struct maillon* suivant;

4 } maillon_t;

5
6
7 typedef struct pile{

8 maillon_t* sommet;

9 } pile_t;

Exemple 4

Supposons que l’on a créé la pile suivante dans le main :

1 pile_t* P = pile_vide ();

2 empiler(P, 6);

3 empiler(P, 7);

4 empiler(P, 8);

Voici à quoi ressemblerait la pile abstraite, et l’état réel de la mémoire :

MP2I Pierre de Fermat 2025-2026 6/32

2. PILE

Dans cette implémentation, on utilise le pointeur NULL pour signaler qu’un maillon est le
dernier, i.e. que c’est la base de la pile. Implémentons les différentes opérations.

Création de pile, déterminer si une pile est vide Une pile vide ne contient aucun
maillon :

1 pile_t* pile_vide (){

2 pile_t* p = malloc(sizeof(pile_t));

3 p->sommet = NULL;

4 return p;

5 }

6
7 bool est_pile_vide(pile_t* p){

8 return (p->sommet == NULL);

9 }

Les deux opérations sont en O(1).

Empiler un élément au sommet Pour empiler un élément, on crée un nouveau maillon
contenant l’élément, puis il faut raccorder les pointeurs de la pile et du nouveau maillon pour
satisfaire le schéma suivant :

En tenant compte de tous les liens qui sont créés / modifiés / supprimés, on obtient le code
suivant :

1 void empiler(pile_t* p, T x){

2 maillon_t* nouv_sommet = malloc(sizeof(maillon_t));

3
4 nouv_sommet ->elem = x;

5 nouv_sommet ->suivant = p->sommet;

6 p->sommet = nouv_sommet;

7 }

Complexité : O(1)

7/32 MP2I Pierre de Fermat 2025-2026

2. PILE

Dépiler le sommet de pile Cette opération est essentiellement l’inverse de celle d’empilage :
on doit extraire le maillon correspondant au sommet et recoller les liens. Il ne faut pas oublier
de libérer la mémoire du maillon extrait afin d’éviter les fuites mémoire :

1 T depiler(pile_t* p){

2 assert (! est_pile_vide(p));

3
4 T res = p->sommet ->elem;

5 maillon_t* nouveau_sommet = p->sommet ->suivant;

6
7 free(p->sommet);

8 p->sommet = nouveau_sommet;

9 return res;

10 }

Complexité : O(1)

Afficher une pile Lorsqu’on implémente une structure en C, il peut être utile d’ajouter des
opérations qui ne font pas partie de la SDA, mais qui sont utiles pour le débug.
Pour afficher une pile, on parcourt tous ses éléments et on les affiche un par un. Si on le fait
dans l’ordre naturel, on affichera le sommet en premier :

1 void print_pile(pile_t* p){

2 maillon_t* m = p->sommet;

3 while (m != NULL){

4 afficher m->elem; // dépend du type des donn ées stock ées

5 m = m->suivant;

6 }

7 }

Quand on manipule des listes châınées, ce type de boucles revient souvent. En C, il est assez
courant d’écrire ces boucles avec des for plutôt que des while, comme suit :

1 for(maillon_t* m = p->sommet; m != NULL; m = m->suivant){

2 ...

3 }

Une telle boucle se lirait “pour chaque maillon m de p, faire ...”

Exercice 2

Réécrire la fonction d’affichage en utilisant une boucle for.

MP2I Pierre de Fermat 2025-2026 8/32

2. PILE

Libérer une pile On parcourt la liste châınée pour libérer un à un les maillons. Il faut faire
attention à l’ordre des opérations : une fois qu’on a libéré un maillon, on ne peut plus accéder à
ses attributs. Une solution est d’utiliser un pointeur pour se rappeler à chaque tour de l’adresse
du maillon à libérer, et de le libérer après être passé au suivant :

1 void free_pile(pile_t* p){

2 maillon_t* m = p->sommet;

3 // Invariant: tous les maillons pr écé dant strictement m

4 // ont été lib érés

5 while (m != NULL){

6 maillon_t* a_liberer = m;

7 m = m->suivant;

8 free(a_liberer);

9 }

10 free(p);

11 }

Exercice 3

Dessiner l’état de la mémoire au fil de l’exécution de free_pile , et vérifier que toute la
mémoire est libérée.

Complexité : O(n)

D Utilisation de la SDA

Supposons que l’on a écrit un header pile.h avec la spécification de la SDA de pile.
Supposons que l’on a aussi créé deux fichiers indépendants pile tab.c et pile chaine.c

implémentant les piles selon les deux SDC vues précédemment. Chacun commencerait par :

1 #include "pile.h"

Lorsque l’on écrit un programme utilisant une pile, on doit inclure le header afin de pouvoir
faire référence au type de la structure et à ses opérations :

1 #include "pile.h"

2
3 int main (){

4 pile_t* p = pile_vide ();

5 empiler(p, "bla");

6 ...

7 free_pile(p);

8 return 0;

9 }

De plus, à la compilation, on peut choisir quelle structure concrète utilisée, simplement en
changeant le fichier C utilisé :

gcc main.c pile_tab.c -o prog_avec_tab

gcc main.c pile_chaine.c -o prog_avec_chaine

Le fait d’avoir séparé la SDA et la SDC fait que l’on peut facilement changer la SDC, car
seule la spécification importe. Le fichier main.c reste identique car il utilise seulement l’interface
donnée par le header.

9/32 MP2I Pierre de Fermat 2025-2026

2. PILE

MP2I Pierre de Fermat 2025-2026 10/32

2. PILE

E Application

Voyons un exemple d’utilisation de la pile : les mots biens parenthésés.

Un mot sur l’alphabet { [, (,],) } est dit bien parenthésé si chaque parenthèse ouvrante est
associée à une parenthèse fermante correspondante de même type qui la suit dans le mot.

Par exemple, ([]([])) est bien parenthésé, mais ([] et ([)] ne le sont pas.

On considère le problème de décision Bien-Parenthésé :

Étant donné s = s0s1 . . . sn−1 un mot sur { [, (,],) }, s est-il bien parenthésé ?

Un algorithme qui apparâıt naturellement pour tester si un mot est bien parenthésé est celui
qui utilise une pile : lorsqu’on lit un symbole ouvrant on l’empile, et lorsqu’on lit un symbole
fermant, on vérifie qu’il correspond bien au sommet de la pile.

Exemple 5

Déterminer si le mot ([]([()[]]]()) est bien parenthésé.

Plus précisément :

Entrée(s) : s = s0s1 . . . sn−1 un mot sur { [, (,],) }
Sortie(s) : “Oui” si le mot est bien parenthésé, “Non” sinon

1 P ← pile vide();
2 i← 0;
3 tant que i < n faire
4 si si = (ou si = [alors
5 empiler(P, si);

6 sinon
7 si est vide(P) alors
8 retourner Non ;

9 sinon
10 b← dépiler(P);
11 si b et si ne correspondent pas alors
12 retourner Non ;

13 i← i+ 1 ;

14 retourner est vide(P);

Terminaison Le programme termine, car sa seule boucle while est en réalité une boucle for.

Complexité La complexité de l’algorithme est en O(n) car toutes les opérations des piles
sont en O(1) avec les implémentations vues précédemment.

11/32 MP2I Pierre de Fermat 2025-2026

2. PILE

Correction On veut montrer que l’algorithme renvoie Oui si et seulement si s est bien pa-
renthésé. Le principe de l’algorithme est que la pile P stocke des parenthèses ouvrantes pour
lesquelles on n’a pas encore trouvé de parenthèse fermante. Autrement dit, en lisant s0 . . . si−1

on a éliminé les parties bien-parenthésées et stocké le trop-plein de parenthèses ouvrantes dans
P .

Cela nous pousse vers l’invariant de boucle suivant :

I : “s est bien-parenthésé ⇔ mot(P)sisi+1 . . . sn−1 est bien-parenthésé”

avec mot(P) = xk−1 . . . x1x0, où x0 est le sommet de P , x1 l’élément sous le sommet, etc...

Montrons que la propriété ci-dessus est bien un invariant de boucle. On note Pk, ik les valeurs
de P et i après k tours de boucles. Les autres variables (s, n) sont constantes.

• Pour k = 0, i0 = 0 et P0 est vide, doncmot(P0) = ε (le mot vide). Ainsi,mot(P0)si0si0+1 . . . sn−1 =
s et la propriété I est trivialement vraie pour k = 0.

• Soit k ∈ N tel que I(k) est vraie. On considère un k + 1 passage.
On a ik+1 = ik + 1, et on distinque deux cas :

— Si sik est ouvrante, alors : Pk+1 =
sik
Pk

, et donc mot(Pk+1) = mot(Pk)sik . donc :

s est BP ⇔ mot(Pk)siksik+1 . . . sn−1 est BP (par HR)
⇔ mot(Pk)siksik+1

. . . sn−1 est BP (car ik+1 = ik + 1)
⇔ mot(Pk+1)sik+1

. . . sn−1 est BP (car mot(Pk+1) = mot(Pk)sik)

et donc la propriété est vraie à la fin du passage.

— Sinon, sik est fermante. Sans perte de généralité, supposons que sik vaut ’)’.

— Si Pk est vide, alors mot(Pk) = ε et donc mot(Pk)sik . . . sn−1 n’est pas bien-
parenthésé puisqu’il commence par une parenthèse. Donc, par HR, s n’est pas
bien parenthésé, et l’algorithme renvoie bien Non.

— Sinon : on note b le sommet de Pk. On a : Pk =
b

Pk+1
, et donc mot(Pk) =

mot(Pk+1)b.

Donc :
s est bien-parenthésé ⇔ mot(Pk)siksik+1 . . . sn−1 est bien-parenthésé

⇔ mot(Pk+1)bsiksik+1
. . . sn−1 est bien-parenthésé

Or, b est ouvrante, et sik est fermante, donc mot(Pk+1)bsiksik+1
. . . sn−1 est bien-

parenthésé si et seulement si les deux conditions suivantes sont réalisées :

— (mot(Pk+1)sik+1
. . . sn−1 est bien-parenthésé ;

— sik correspond à b (c’est à dire sik = ’(’).

Ainsi, si sik correspond à b, on a bien

s est bien-parenthésé ⇔ mot(Pk+1)sik+1
. . . sn−1 est bien-parenthésé et l’in-

variant de boucle est bien préservé. Sinon, s n’est pas bien parenthésé (car il
contient [), et l’algorithme renvoie Non et est correct.

Nous avons donc montré que I est un IdB, et qu’en plus, si l’algorithme renvoie Non, alors
le mot de base n’est pas bien parenthésé.
En particulier, à la sortie de la boucle, i = n et donc s est bien parenthésé si et seulement si
mot(P) l’est. Mais P ne contient que des parenthèses ouvrantes : donc s est bien parenthésé
si et seulement si P est vide, ce qui correspond bien à la valeur renvoyée par l’algorithme.

MP2I Pierre de Fermat 2025-2026 12/32

3. FILE

3 File

La structure de file stocke des données selon le principe ”Dernier arrivé, dernier sorti”, ou
LILO (Last In Last Out), ou encore FIFO (First In First Out) Ainsi, les données sont lues
dans l’ordre où elles sont ajoutées,

Remarque 2

Visuellement, c’est une file d’attente au supermarché !

Exemple 6

Voici un exemple d’utilisation d’une file :

A Structure de données abstraite

Une file représente une suite finie d’éléments de type T , dont la taille peut varier. Une file
a une tête et une queue, et ses éléments sont rangés, de telle sorte que l’on enfile les nouveaux
éléments à la queue de la file, et que l’on défile les éléments par la tête de la file. Ses opérations
sont :

— Créer une file vide : file vide() ;

— Enfiler un nouvel élément x à la queue d’une file F : enfiler(F, x) ;

— Défiler l’élément à la tête d’une file F et le renvoyer : defiler(F) ;

— Déterminer si une file est vide : est vide(F).

Exercice 4

Pour chaque opération, dire si c’est un accesseur, un transformateur ou un constructeur.

13/32 MP2I Pierre de Fermat 2025-2026

3. FILE

B Implémentation par liste châınée

On utilise presque les mêmes structures que pour les piles, mais on doit stocker deux poin-
teurs : celui de la tête et celui de la queue :

1 typedef struct maillon {

2 T elem;

3 struct maillon* suiv; // de la tete vers la queue

4 } maillon_t;

5
6 typedef struct file_{

7 maillon_t* tete;

8 maillon_t* queue;

9 } file_t;

Attention, le sens des pointeurs suiv va contre le sens de la file.

Exemple 7

Voici une file abstraite et le schéma qu’on aurait en mémoire avec une pile concrète par
liste châınée :

Pour créer une file vide et déterminer si une file est vide, on procède exactement comme
pour les piles :

1 file_t* file_vide (){

2 file_t* f = malloc(sizeof(file_t));

3 f->tete = NULL;

4 f->queue = NULL;

5 }

6
7 bool est_file_vide(file_t* f){

8 return (f->tete == NULL); // ou bien: return (f->queue == NULL);

9 }

MP2I Pierre de Fermat 2025-2026 14/32

3. FILE

Enfilage Enfiler un élément est un peu technique. Selon si la file était vide ou non, le schéma
est un peu différent. Dans les deux cas, on crée nouveau maillon qui devient la queue de la file,
mais si la file était vide alors ce nouveau maillon devient aussi la tête de file !

Dessinons les deux situations, en notant à chaque fois les liens qui sont ajoutés, supprimés,
modifiés :

On en déduit le code C suivant :

1 void enfiler(file_t* f, T x){

2 maillon_t* anc_q = f->queue; // ancienne queue

3
4 // cr é ation de la nouvelle queue de file

5 maillon_t* nouv_q = malloc(sizeof(maillon_t));

6 nouv_q ->elem = x;

7 nouv_q ->suivant = NULL;

8
9 // mise à jour de la queue

10 f->queue = nouv_q;

11 if (anc_q == NULL){ //la file était vide: mettre à jour la tete

12 f->tete = nouv_q;

13 } else { // anc_q a maintenant un maillon suivant: nouv_q

14 anc_q ->suiv = nouv_q

15 }

16 }

15/32 MP2I Pierre de Fermat 2025-2026

3. FILE

Défilage A nouveau, faisons des schémas pour étudier comment les différentes liaisons sont
modifiées lorsque l’on défile un élément.

On obtient le code C suivant :

1 T defiler(file_t* f){

2 assert (! est_file_vide(f));

3
4 maillon_t* anc_tete = f->fete; // ancienne tete

5 T res = anc_tete ->elem;

6
7 maillon_t* nouv_tete = ancienne_tete ->suivant;

8 f->tete = nouv_tete;

9
10 if (f->tete == NULL){ // la file est vide

11 f->queue = NULL;

12 }

13 return res;

14 }

Exercice 5

Reprendre les deux fonctions précédentes si les pointeurs au sein de la châıne vont mainte-
nant de la queue vers la tête. Que se passe t-il ?

L’affichage et la libération de mémoire se font de manière analogue à ce que l’on a fait pour
les piles.

MP2I Pierre de Fermat 2025-2026 16/32

3. FILE

C Implémentation par tableau

Comme pour les piles, on peut implémenter une file en utilisant un tableau contenant les
valeurs de la file, de la tête vers la queue. Plus précisément, on utilise la structure suivante :

1 #define Nmax 10000

2 typedef struct file {

3 int queue; // indice de la prochaine case à remplir si l'on enfile

4 int nb_elem; // nombre d' él é ments dans la file

5 T tab[Nmax];

6 } file_t;

Dans une file f de ce type, les cases utiles sont les cases d’indice f->queue - i avec i allant

de 1 à f->nb_elem . La valeur en queue de file est donc à la case f->queue - 1 , et la valeur

en tête de file est à la case f->queue - f->nb_elem . Simulons l’évolution d’une file implémentée
ainsi avec Nmax = 5 :

On voit donc qu’en utilisant directement cette implémentation, on se heurte à un problème :
la file peut devenir inutilisable alors qu’elle n’est pas pleine. On va donc travailler dans des
tableaux cycliques. Autrement dit, on considère que la case Nmax− 1 du tableau est collée à
la case 0. Ainsi, on pourra stocker la file à cheval sur la fin et le début du tableau. Par exemple :

Notons que cela revient à prendre les indices modulo Nmax.

Pour créer une file vide, et déterminer si une file est vide :

1 file_t* file_vide (){

2 file_t* f = malloc(sizeof(file_t));

3 f->nb_elem = 0;

4 f->queue = 0;

5 return f;

6 }

7
8 bool est_vide(file_t* f){

9 return (f->nb_elem == 0);

10 }

17/32 MP2I Pierre de Fermat 2025-2026

3. FILE

L’opération pour enfiler est similaire à celle d’empilage de la pile, mais on travaille modulo
la taille du tableau :

1 void enfiler(file_t* f, T x){

2 assert(f->nb_elem < Nmax);

3 f->tab[f->queue] = x;

4 f->queue = (f->queue + 1) % Nmax;

5 f->nb_elem ++;

6 }

Pour défiler, il faut commencer par trouver l’indice de la case correspondant à la tête de
file :

1 T defiler(file_t* f){

2 assert (! est_vide(f));

3 T res = f->tab[(Nmax + f->queue - f->nb_elem)%Nmax];

4 f->nb_elem --;

5 return res;

6 }

Exercice 6

On propose une variante de l’implémentation par tableau cyclique, où l’on stocke un indice
de queue et un indice de tête :

1 #define Nmax 10000

2 typedef struct file {

3 int queue; // indice de la prochaine case à remplir si l'on enfile

4 int tete; // indice de la case à dé filer

5 T tab[Nmax];

6 } file_t;

Implémenter les opérations de file avec cette SDC. Que remarquez-vous ?

MP2I Pierre de Fermat 2025-2026 18/32

4. TABLEAU REDIMENSIONNABLE

4 Tableau redimensionnable

A Principe

Une limite des implémentations par tableau des piles et des files est que l’on a une taille
limite à nos structures. On s’intéresse à l’implémentation d’une structure que l’on appellera vec-
teur, où les opérations sont celles des tableaux (lecture d’une case, écriture d’une case) et celles
d’une pile (ajouter ou supprimer un élément à la fin), sans limite de taille L’implémentation
sera facilement adaptable aux implémentations des piles et files par tableau.

L’idée est de prendre un tableau d’une taille arbitraire (4 dans le code ci-dessous), et de
redimensionner ce tableau à chaque fois qu’il est rempli.

1 typedef struct vect{

2 T* tab; // élé ments

3 int taille_max; // nombre de cases allou ées pour tab

4 int nb_elem; // nombre de cases utilis ées

5 } vect_t;

6
7 vect_t* creer_vecteur (){

8 vect_t* v = malloc(sizeof(vect_t));

9 v->nb_elem = 0;

10 v->tab = malloc (4 * sizeof(T));

11 v->taille_max = 4;

12 return v;

13 }

Lorsque l’on ajoute un élément à la fin du vecteur, s’il ne reste plus de place, i.e. si
nb_elem == taille_max , on alloue un nouveau tableau, plus grand, et on y recopie tous les
éléments.

Exercice 7

En décidant arbitrairement d’augmenter la taille de 10 à chaque fois qu’on réalloue, représenter
l’évolution du tableau si l’on ajoute les éléments 1, 2, 3, 4, 5, etc ... à partir d’un vecteur
vide. Même question si l’on double la taille à chaque fois qu’on réalloue.

En C, la fonction realloc sert à réallouer de la mémoire. Par exemple :

1 int* p = malloc (10 * sizeof(int));

2 ...

3 p = realloc(p, 15* sizeof(int));

Dans le code précédent, la dernière ligne désalloue les 10 cases int réservées à la ligne
d’au dessus, et alloue 15 nouvelles cases. Elle recopie dans les nouvelles cases le contenu des
anciennes. Cette opération prend un temps linéaire en l’ancienne taille mémoire car elle doit
recopier chaque élément un à un.

On peut donc implémenter l’opération d’ajout comme suit :

1 void ajouter(vect_t* v, T x){

2 // redimensionner si né cessaire

3 if (v->nb_elem == v->taille_max){

4 int nouvelle_taille = ???;

5 v->tab = realloc(v->tab , nouvelle_taille);

6 v->taille_max = nouvelle_taille;

7 }

8 v->tab[v->nb_elem] = x;

9 v->nb_elem ++;

10 }

19/32 MP2I Pierre de Fermat 2025-2026

4. TABLEAU REDIMENSIONNABLE

B Performances : analyse de complexité amortie

Il reste à choisir de combien augmenter la taille lorsque l’on redimensionne. Notons que
dans tous les cas, la complexité de l’ajout dans un vecteur de taille n sera en Ω(n) car dans
le pire cas (c’est à dire en cas de redimensionnement), il faut recopier tous les éléments. Nous
allons étudier la complexité amortie de l’ajout : si l’on effectue n ajouts depuis un vecteur
vide, en notant le coût total Cn, on appellera coût amorti de l’ajout la valeur moyenne Cn

n
.

La complexité amortie d’une opération permet donc d’évaluer son coût moyenné sur un grand
nombre d’utilisations. L’idée est que même si certains cas peuvent avoir une très mauvaise
complexité, dans un programme long, ils arriveront rarement et seront compensés par un grand
nombre d’opérations rapides.

Première idée A chaque ajout, on augmente de 1 la taille du tableau. Alors, à partir du
premier redimensionnement, chaque ajout cause un redimensionnement et coûte Θ(i) où i est la
taille du vecteur au moment de l’ajout. Ainsi, si l’on ajoute n éléments d’affilée, la complexité
totale est en Θ(n2).

Deuxième idée Plutôt que de réallouer un tableau avec une seule place de plus, on fixe
K ∈ N∗ et on alloue le tableau par blocs de K cases : Initialement, le tableau possède K cases,
puis lorsque l’on doit ajouter un K + 1-ème élément, on réalloue un tableau de taille 2K, puis
de taille 3K, etc...

Ainsi, si l’on fait plusieurs ajouts, alors les K premiers se feront en temps constant, puis le
K + 1-ème en temps K + 1, puis les K − 1 suivants en temps constant, puis le 2K + 1-ème en
temps 2K + 1, etc...

Le coût total combiné de n ajouts dans un vecteur vide est de l’ordre de :∑n−1
i=0 (i+ 1 si i est multiple de K, 1 sinon)

=
n−1∑
i=0

1 +
n−1∑
i=0

(i si i multiple de K, 0 sinon)

=
n−1∑
i=0

1 +

⌊n−1
K

⌋∑
j=0

Kj

= n+K
⌊n−1

K
⌋(⌊n−1

K
⌋+1)

2

= O(n2)

Donc, en moyenne, un ajout prend de l’ordre de O(n), comme pour la première idée. Notons
que la constante se cachant dans le O est beaucoup plus faible.

Troisème idée On double la taille du tableau à chaque fois. Si l’on calcule à nouveau le coût
total de n ajouts successifs, on obtient :∑n−1

i=0 (i+ 1 si i puissance de 2, 1 sinon)

≤
n−1∑
i=0

1 +

⌊log2(n−1)⌋∑
j=0

2j

≤ n+ 2⌊log2(n)⌋+1

≤ 3n

Donc, le coût moyen d’un ajout est constant ! On dit que l’ajout a un coût amorti O(1).

MP2I Pierre de Fermat 2025-2026 20/32

4. TABLEAU REDIMENSIONNABLE

Notons que ce faible coût en temps n’est pas gratuit : cette méthode nécessite de réserver
jusqu’au double de la taille réelle du tableau. Le coût spatial est élevé, si l’on programme
sur un système où la mémoire est précieuse, comme un micro-ordinateur, il faudra faire un
compromis entre le coût temporel et le coût spatial.

Dans l’implémentation classique C de Python, c’est ce système de tableaux redimension-
nables qui est utilisé pour implémenter les listes. Si l’on inspecte la taille mémoire d’une liste
après plusieurs ajouts, on obtient le graphe suivant :

Figure 1 – Taille d’une liste Python L après k ajouts.

On voit qu’à chaque fois qu’un ajout dépasse la taille mémoire, la liste est réallouée en
multipliant la taille par 1.125. On peut montrer avec les même calculs que précédemment que
ceci donne des ajouts en temps amorti constant.

Exercice 8

Imaginer d’autres stratégies de redimensionnement (multiplier la taille par un réel α autre
que 2, mettre la taille au carré, multiplier la taille par sa racine, etc...), et étudier leurs
performances du point de vue du temps et de l’espace.

21/32 MP2I Pierre de Fermat 2025-2026

4. TABLEAU REDIMENSIONNABLE

MP2I Pierre de Fermat 2025-2026 22/32

5. DICTIONNAIRES

5 Dictionnaires

Les dictionnaires font partie des structures de données les plus importantes en informatique.
Un dictionnaire est comme un tableau, indexé par des éléments d’un type quelconque plutôt
que par des entiers consécutifs.

Exemple 8

Python propose un type natif de dictionnaires, que l’on peut manipuler avec la même
syntaxe que les tableaux :

1 cri = dict() # associe à chaque animal son cri

2 cri["chat"] = "miaou"

3 cri["chien"] = "waf"

4 cri["carpe"] = ""

5
6 s = cri["chat"]

On fixe K et V deux ensembles. Un dictionnaire stocke une fonction de K dans V partielle
(c’est à dire qu’elle n’est pas forcément définie sur tout K). Autrement dit, un dictionnaire
stocke des couples (k, v) ∈ K×V , où l’on appelle k la clé et v la valeur, tels que pour un k ∈ K
donné, il y a au plus un couple dans le dictionnaire dont k est la clé. Un dictionnaire permet
de chercher la valeur associée à une clé, et de modifier cette valeur. On considère les opérations
suivantes :

— dict() crée un dictionnaire vide ;

— ajout(D, k, v) associe la valeur v à la clé k dans le dictionnaire D.

— contient(D, k) détermine si la clé k est dans le dictionnaire D.

— recherche(D, k) renvoie la valeur associée à la clé k dans le dictionnaire D. k doit être
une clé valable.

— supprime(D, k) supprime la clé k du dictionnaire D, ainsi que la valeur qui y était
associée.

Lorsque l’on associe une valeur v ∈ V à une clé k ∈ K, si k est déjà dans le dictionnaire,
alors on écrase sa valeur associée pour y écrire v.

Exercice 9

Donner le type de chaque opération (Constructeur, Accesseur, Transformateur).

En pseudo-code, on utilisera parfois une notation proche des tableaux, comme celle de
Python : si D est un dictionnaire et k une clé, alors D[k] est la valeur associée à k dans D, i.e.
recherche(D, k). De même, écrire D[k]← v revient à écrire ajout(D, k, v).

23/32 MP2I Pierre de Fermat 2025-2026

5. DICTIONNAIRES

A Exemples d’applications des dictionnaires

Nombre d’occurrences, élément majoritaire Étant donné un tableau T d’éléments, on
se demande quel est l’élément majoritaire, i.e. l’élément ayant le plus d’occurrences dans T .
Un premier algorithme näıf consiste à regarder, pour chaque case, le nombre de cases qui
contiennent la même valeur, et de garder en mémoire la meilleure case vue jusqu’à maintenant :

Algorithme 2 : majoritaire(T, n)

Entrée(s) : T tableau de taille n
Sortie(s) : x ∈ T tel que {i ∈ J0, n− 1K | T [i] = x} est de cardinal maximal

1 xm ← Rien // élément le plus fréquent vu jusqu’à maintenant

2 om ← 0 // nombre d’occurrences de xm dans T
3 pour i = 0 à n− 1 faire
4 o← 0// nombre d’occurrences de T [i] dans T
5 pour j = 0 à n− 1 faire
6 si T [i] = T [j] alors
7 o← o+ 1;

8 si o > om alors
9 om ← o;

10 xm ← T [i];

11 retourner xm

La complexité de cet algorithme est O(n2). En commençant par trier le tableau, on pourrait
améliorer cette complexité en O(n log n).

Exercice 10

Expliquer comment trouver un élément majoritaire dans un tableau trié plus efficacement
qu’avec l’algorithme majoritaire(T, n).

Avec un dictionnaire, on peut trouver une solution encore plus efficace. L’idée est de créer
un dictionnaire dont les clés sont les éléments du tableau, tel que la valeur associée à un élément
est son nombre d’occurrences dans T . On commence par remplir ce dictionnaire en lisant une
fois le tableau, puis on regarde la clé du dictionnaire ayant la plus grande valeur :

MP2I Pierre de Fermat 2025-2026 24/32

5. DICTIONNAIRES

Algorithme 3 : Élément majoritaire

Entrée(s) : T tableau de taille n
Sortie(s) : x ∈ T tel que {i ∈ J0, n− 1K | T [i] = x} est de cardinal maximal
// Calcul du dictionnaire des occurrences

1 O ← Dictionnaire vide // x 7→ nombre d’occurrences de x
2 pour i = 0 à n− 1 faire
3 si T [i] n’est pas une clé de O alors
4 O[T [i]]← 0;

5 O[T [i]]← O[T [i]] + 1;

// Recherche de la clé de valeur maximale

6 xm ← Rien ;
7 om ← 0;
8 pour x clé de D faire
9 si O[x] > om alors

10 om ← o;
11 xm ← x;

12 retourner xm

Alors, le en notant A(i) le coût de l’ajout dans un dictionnaire à i éléments et R(i) le coût
de la recherche dans un dictionnaire à i éléments, le coût total de l’algorithme est :

n−1∑
i=0

(R(i) + A(i)) + nR(n)

Nous allons voir une implémentation des dictionnaires où toutes les opérations sont en
temps constant O(1) 1. L’algorithme précédent est alors en O(n) : on a gagné un facteur n
par rapport à l’algorithme näıf !

1. En moyenne.

25/32 MP2I Pierre de Fermat 2025-2026

5. DICTIONNAIRES

Implémentation par liste châınée On commence par une implémentation plus näıve, où
la recherche sera en complexité linéaire.

L’idée de cette implémentation est d’avoir une liste doublement châınée dont les maillons
contiennent des couples (k, v) clé-valeur :

1 typedef struct maillon{

2 K key;

3 V value;

4 struct maillon* suiv;

5 struct maillon* prec;

6 } maillon_t;

7
8 typedef struct dict{

9 maillon_t* tete;

10 } dict_t;

Pour faire une recherche, une modification ou une suppression, le principe est le même :
faire une recherche linéaire en parcourant les maillons un à un. Par exemple :

1 /* Stocke dans *result la valeur associ ée à K dans d,

2 et renvoie un bool éen indiquant si K a été trouv ée */

3 bool recherche(dict_t* d, K key , V* result){

4 for (maillon_t* m = d->tete; m != NULL; m = m->suiv){

5 if (m->key == K){

6 *result = m->value;

7 return true;

8 }

9 }

10 return false;

11 }

MP2I Pierre de Fermat 2025-2026 26/32

6. DICTIONNAIRES : TABLES DE HACHAGE

6 Dictionnaires : tables de hachage

Les dictionnaires sont une généralisation des tableaux. Si l’ensemble K des clés est de la
forme J0,m − 1K pour un m ∈ N, alors un dictionnaire ayant K comme clés est presque
exactement un tableau. La différence est que pour un dictionnaire, il faut pouvoir indiquer si
une case est utilisée ou pas, i.e. si l’indice de la case est présent dans le dictionnaire ou pas.
Pour représenter un tel dictionnaire, on pourrait donc utiliser un tableau dans lequel on stocke
des éléments de l’ensemble V ∪ {NIL}, où NIL est un élément particulier signifiant “pas de
valeur”.
Supposons maintenant que l’ensemble des clés K est fini de cardinal m, mais que ce n’est
pas forcément un intervalle de la forme J0,m − 1K (par exemple l’ensemble des prénoms de la
classe). Si l’on dispose d’une fonction bijective de numérotation f : K → J0,m − 1K, on peut
implémenter un dictionnaire en utilisant un tableau T comme décrit au dessus, en stockant
chaque clé k dans la case T [i] avec i = f(k).

— Création d’un dictionnaire vide : renvoyer un tableau T de taille m, avec T [i] = NIL
pour i ∈ J0,m− 1K.

— Écriture d’un couple (k, v) : Effectuer T [f(k)]← v.

— Recherche de la valeur associée à k : Renvoyer T [f(k)].

— Suppression de la clé k : Effectuer T [f(k)]← NIL.

Cependant, cette solution ne fonctionne plus dès que l’ensemble K des clés possibles est
trop grand. Prenons par exemple comme clés les châınes de caractères de taille au plus 10.
En utilisant le code ASCII, on peut voir une telle châıne comme un entier de 10 chiffres en
base 256, ce qui permettrait de numéroter l’ensemble des châınes. On pourrait implémenter un
dictionnaire comme expliqué plus haut, mais cela nécessiterait de réserver un tableau de taille
25610 ≈ 1024, alors qu’en pratique seul une infime fraction du tableau serait réellement utile...

Le principe des tables de hachage est de ramener n’importe quel ensemble de clé à un
ensemble de la forme J0,m− 1K pour un m ∈ N, avec m raisonnablement petit.

Définition 4

Soit K un ensemble de clés, et m ∈ N∗. Une fonction de hachage est une fonction h : K →
J0,m− 1K pas forcément bijective.
Pour k ∈ K, on appelle h(k) le hash de k.

Si h est une fonction de hachage à valeurs dans J0,m−1K, alors on peut implémenter un
dictionnaire à clés dans K par un tableau de taille m. Pour insérer, modifier ou supprimer
une clé k ∈ K donnée, on calcule i = h(k), et on regarde à la i-ème case du tableau. On
appelle un tel tableau une table de hachage.

Exemple 9

Soit K l’ensemble des mots sur l’alphabet a, b, ..., z. On considère une partie de jeu
à plusieurs joueurs. On voudrait représenter le résultat de la partie par un dictionnaire qui
à chaque joueur associe son score.
On considère la fonction de hachage h0 : K → J0, 25K qui à chaque châıne de caractère
associe la première lettre de son prénom (vu comme un entier entre 0 et 25). Cette fonction
permet d’implémenter une table de hachage basique à 25 cases. Par exemple, pour les clés
suivantes :

adi, guigui, max, oli

27/32 MP2I Pierre de Fermat 2025-2026

6. DICTIONNAIRES : TABLES DE HACHAGE

On obtiendrait la table de hachage suivante :

Exercice 11

On prend maintenant comme fonction de hachage

h5(k) =
∑

x lettre de k

x mod 5

(On considère toujours que a = 0, b = 1, . . . , z = 25). Avec le même ensemble de clés
qu’au dessus, représenter la nouvelle table de hachage :

On peut donc se retrouver dans une situation ou deux clés sont hachées vers la même valeur.
En fait, dès que la taille m de la table est strictement inférieure à |K|, le lemme des tiroirs dit
que l’on trouvera forcément deux clés ayant le même hash, car on n’aura pas injectivité de la
fonction de hachage.

Définition 5

Soit h : K → J0,m− 1K une fonction de hachage et k ̸= k′ ∈ K. On dit que k et k′ forment
une collision si h(k) = h(k′)

De plus, si l’on reprend la première fonction de hachage, celle qui prend seulement la
première lettre du prénom, on remarque que peu de prénoms commencent par k, w, x, y, z
par rapport aux autres lettres. Donc, on est non-seulement sur d’avoir des collisions, mais on
sait même que certaines cases seront très demandées, et d’autres pas du tout.
On est donc confrontés à deux problèmes :

— Que faire en cas de collision ?

— Comment choisir une fonction de hachage qui évite le plus possible les collisions, et les
répartit le mieux possible ?

On voudrait idéalement que la valeur de hachage fabriquée par la fonction soit “aléatoire”,
c’est à dire qu’on ne puisse pas a priori prévoir son comportement global. Si on reprend la
deuxième fonction vue en exemple, qui fait la somme des lettres et prend le résultat modulo m,
on peut imaginer qu’il n’y aura pas de case privilégiée : a priori, il n’y a pas de raison particulière
pour que beaucoup de prénoms aient les sommes de leurs lettres congrues à 3 modulo 19.

MP2I Pierre de Fermat 2025-2026 28/32

6. DICTIONNAIRES : TABLES DE HACHAGE

Dans la suite, on considère T un tableau de taille m utilisé comme table de hachage pour
un dictionnaire. On note {k0, . . . , kn−1} les clés utilisées, n est donc la taille du dictionnaire
(ne pas confondre la taille du dictionnaire et la taille du tableau utilisé pour implémenter le
dictionnaire).

Il existe deux classes de méthodes pour résoudre les collisions dans une table de hachage :

— Les méthodes de résolution par châınage : les éléments dont les clés ont la même valeur
par la fonction de hachage sont rangés dans une seule liste châınée. On parle de hachage
indirect.

— Les méthodes de résolution par calcul : Lorsqu’il y a une collision, on calcule un nouvel
emplacement où stocker la nouvelle clé. On parle de hachage direct.

Dans ce cours, on se contentera d’étudier la gestion par châınage.

A Gestion des collisions par châınage

Le principe est de stocker dans chaque case de la table de hachage une liste châınée de
tous les éléments qui y ont été mis par hachage. Ainsi, T [i] contiendra la liste châınée de toutes
les clés k ∈ {k0, . . . , kn−1} telles que h(k) = i. Les cases de T sont appelées des alvéoles (et
parfois buckets en anglais).

On se ramène donc à la manipulation de dictionnaires par liste châınée étudiée au début
de cette section. Pour insérer, supprimer, modifier ou rechercher dans une table de hachage, on
calcule le hash de la clé k à traiter notons le i, et on effectue l’opération sur la liste châınée
stockée dans l’alvéole i du tableau.

On implémente donc les opérations comme suit :

— Création d’un dictionnaire vide : Renvoyer un tableau T de taille m, avec chaque case
contenant une liste vide. Les maillons de ces listes stockeront des couples clé-valeur.

— Écriture d’un couple (k, v) :

Algorithme 4 : Écriture dans une table de hachage avec châınage

Entrée(s) : T table de hachage, h fonction de hachage à utiliser, (k, v) ∈ K × V
couple à insérer

1 i← h(k);
2 m← recherche(T [i], k) // Maillon contenant la clé k
3 si m = NULL alors
4 ajouter(T[i], (k, v));

5 sinon
6 m.v = v;

— Recherche, Suppression : même principe

Exemple 10

On prend m = 9, et on considère les clés k0, . . . , k12 et leurs valeurs de hachage :

clé : k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12
hash : 3 1 4 1 4 1 5 9 2 6 5 3 5

Alors la table de hachage ressemblera à :

29/32 MP2I Pierre de Fermat 2025-2026

6. DICTIONNAIRES : TABLES DE HACHAGE

Le pire cas pour ces opérations est atteint lorsque toutes les associations sont stockées dans
la même alvéole. La complexité est alors en O(n). En pratique, lorsque l’on choisit une bonne
fonction de hachage, les clés sont bien réparties, et le coût moyen des différentes opérations est
O(1+α), où α = n

m
est le taux de remplissage, i.e. la taille moyenne des listes châınées stockées

dans les alvéoles.

Si l’on peut estimer à l’avance le nombre maximal n de clés que contiendra le dictionnaire,
on peut fixer m = n à la création et donc avoir des opérations en O(1) en moyenne. On peut
également redimensionner le dictionnaire au cours de l’exécution, afin de contrôler α. Le taux
de remplissage représente un compromis temps-mémoire : Si α est très petit, alors la table
est peu remplie, donc il y a peu de collisions et les opérations sont rapides, mais la mémoire
utilisée est très supérieure à l’espace nécessaire. Si α est grand, alors le tableau est très rempli,
avec de nombreuses collisions, et les opérations sont lentes, mais le gaspillage de mémoire est
minime.

En pratique, en redimensionnant et en gardant α borné convenablement, on obtient des
bonnes performances en mémoire et en temps. Dans la plupart des cas pratiques, on peut
considérer que les tables de hachage ont des complexités en temps constant : c’est une struc-
ture extrêmement efficace !

Par exemple, dans l’implémentation en C de Python, les dictionnaires sont implémentés
par des tables de hachage avec gestion des collisions par châınage. Si on regarde dans le code
source 2, on peut voir que la taille des tables n’est pas fixée : elle est de 16 initialement, et le
taux de remplissage α est gardé entre 10% et 50%, en redimensionnant la table lorsqu’elle est
trop ou pas assez remplie.

2. github.com/python/cpython/blob/main/Python/hashtable.c

MP2I Pierre de Fermat 2025-2026 30/32

https://github.com/python/cpython/blob/main/Python/hashtable.c

6. DICTIONNAIRES : TABLES DE HACHAGE

B Choix d’une fonction de hachage

Exemple 11

Si K est un ensemble de châınes de caractères, on peut considérer la fonction :

h : k = k0k1 . . . kl−1 7→
l−1∑
i=0

ki256
i mod m

Autrement dit, on considère, comme évoqué plus haut, que k représente un entier en
base 256, et on prend le résultat modulo m.

Un inconvénient de cette fonction est que si m est pair, alors k et h(k) auront toujours
la même parité. Par exemple, les mots finissant par ’e’ seront toujours hachés vers les cases
d’indice impair, car ’e’ vaut 101 en ASCII. De manière plus générale, si m est multiple de 2p,
alors les p derniers bits de h(k) seront les mêmes que k.

On souhaite trouver des fonctions de hachage étant “assez aléatoires”. De bons critères (liste
non exhaustive) pour une fonction de hachage sont :

— Peu de collisions, et difficile de les trouver

— Fait intervenir tous les bits de la représentation de manière équitable

— Temps d’exécution court

Il existe de très nombreux algorithmes de hachage 3 dont certains servent plutôt en crypto-
graphie que pour les tables de hachage.

La méthode de l’exemple précédent, consistant à considérer la clé comme un entier, et à
prendre le reste modulo m, s’appelle méthode par division.

3. en.wikipedia.org/wiki/ List of hash functions

31/32 MP2I Pierre de Fermat 2025-2026

https://en.wikipedia.org/wiki/List_of_hash_functions

6. DICTIONNAIRES : TABLES DE HACHAGE

C Opérations additionnelles

On peut vouloir munir la structure abstraite de dictionnaire d’opérations supplémentaires.
Par exemple, si l’ensemble K des clés est muni d’un ordre, étant donné une borne k0 ∈ K,
on pourrait avoir une opération permettant d’obtenir la liste des couples (k, v) ∈ D tels que
k < k0.

De manière plus générale, on voudrait être capable d’itérer sur les valeurs d’un dictionnaire
D, soit dans un ordre arbitraire, soit selon un ordre précis défini surK, soit par ordre d’insertion
des clés-valeurs, etc....
L’implémentation des dictionnaires par liste châınée permet de réaliser facilement les deux
premières opérations, car la structure châınée permet naturellement de parcourir les entrées du
dictionnaire une à une. Cependant, pour les tables de hachage, la position des couples dans
la table n’est pas corrélée à l’ordre d’insertion, où à un quelconque ordre sur K. Si l’on veut
chercher une clé vérifiant une certaine propriété mais sans connâıtre sa valeur, on doit vérifier
chaque alvéole une par une :

Algorithme 5 : cle inferieure(T, k0)

Entrée(s) : T table de hachage par chainage à m alvéoles, k0 valeur limite
Entrée(s) : Une clé de T plus petite que k0, ou NIL s’il n’y en a pas

1 pour i = 0 à m− 1 faire
2 m← tete(T [i]);
3 tant que m ̸= NULL faire
4 si m.k < k0 alors
5 retourner k

6 m← suivant(m);

7 retourner NIL

La boucle extérieure permet d’itérer sur les alvéoles, et la boucle intérieure permet de par-
courir l’alvéole T [i].

Ce schéma algorithmique, consistant à parcourir chaque liste châınée de la table, permet de
répondre à de nombreuses requêtes : afficher le contenu du dictionnaire, renvoyer la liste des
clés, la liste des valeurs, copier un dictionnaire, etc...

En utilisant d’autres types de structures, les arbres (voir chapitre 8), on peut obtenir des
dictionnaires où les couples (clé, valeur) sont stockés d’une manière directement liée à l’ordre
des clés. Avec ces implémentations, certaines requêtes (trouver la clé minimale, renvoyer les
clés dans un certain intervalle), se font avec une bien meilleure complexité que les tables de
hachage.

MP2I Pierre de Fermat 2025-2026 32/32

	Introduction
	Pile
	File
	Tableau redimensionnable
	Dictionnaires
	Dictionnaires: tables de hachage

