
TD6: Structures de données
Corrigé

MP2I Lycée Pierre de Fermat

Exercice 1. Notation Polonaise Inversée

Q1. Évolution de la pile au fur et à mesure que l’on lit l’expression :

2
2, d
d− 2
d− 2, c
c− (d− 2)
c− (d− 2), b
c− (d− 2), b, a
c− (d− 2), a+ b
(a+ b)× (c− (d− 2)

Q2.

(a) a 2 c d −×+ 4 b− / est valide, sa version infixe serait (b− 4)/(((d− c)× 2) + a).

(b) x+ y n’est pas valide : lorsqu’on lit le +, la pile ne contient qu’un élément.

(c) x y + z n’est pas valide : Il reste deux éléments dans la pile à la fin.

(d) x y + z× est valide, et correspond à z × (y + x).

Q3.

(a) a× c+ b donne b c a × +

(b) a× (c+ b) donne c b + a ×
(c) 2× (a× a× a+ 1) donne 1 a a a × × + 2 ×
(d) (1− x)× (2 + (x/(1− x)) + x) donne x x 1 − x / + 2 + x 1 − times

Q4. Dans une expression en NPI, on a Nop = Nc − 1.

Justification : dans l’algorithme de lecture, la lecture d’une constante augmente la taille
de pile de 1, et la lecture d’un opérateur diminue la taille de pile de 1. Au départ, la pile
est vide, et si l’expression est valide alors la pile est de taille 1 en fin de lecture, d’où
0 +Nc −Nop = 1.

Cette condition n’est pas suffisante, en effet elle serait aussi vérifiée par n’importe quelle
expression infixe, comme x+ y, qui n’est pas valide en NPI.

1



Q5. La lecture d’un opérateur d’arité r a pour effet de modifier la taille de pile par 1−r. En
considérant les constantes comme des opérateurs d’arité 0, on peut généraliser la formule
précédente :

0 +
n∑

k=1

(1− a(ok)) = 1

Q6. SWAP n’a aucun effet sur la taille de la pile, et DUP se comporte comme une constante
et augmente la taille de pile. On peut introduire la notion de co-arité, défini comme le
nombre d’éléments produits par un opérateur. Par exemple, DUP et SWAP sont de co-
arité 2. Alors, en notant o1, . . . , on les opérateurs de l’expression, et en notant c(oi) la
co-arité de l’opérateur oi, on a :

0 +
n∑

i=1

(c(oi)− a(oi)) = 1

car chaque opérateur oi consomme a(oi) et produit c(oi).

Q7. Une solution en 13 coups : 4 π 3 × / DUP 3 + SWAP sin 1 + /

Q8. Les conditions exprimées précédemment traduisent le fait que la pile doit avoir une
taille de 1 à la fin de l’algorithme de lecture d’une expression en NPI. Or, pour que la
lecture se passe correctement, il faut aussi que chaque opérateur lu puisse s’exécuter
correctement. Ainsi, lorsqu’on lit l’opérateur ok, il faut que la pile contienne au moins
a(ok) éléments, c’est à dire qu’on ait :

k−1∑
i=1

(c(oi)− a(oi)) ≤ a(ok)

Si chaque opérateur peut être lu, et que la pile contient bien un seul élément à la fin,
l’expression est valide. Donc, l’ensemble suivant de conditions est nécessaire et suffisant :

n∑
i=1

(c(oi)− a(oi)) = 1 (1)

∀k ∈ J1, nK,
k−1∑
i=1

(c(oi)− a(oi)) ≤ a(ok) (2)

2



Exercice 2. Opérations de pile

Q1. L’algorithme renvoie une pile contenant les éléments de P dans l’ordre inverse, et
vide P .

Q2. L’idée est de renverser la pile deux fois, en faisant une copie des éléments dans une
nouvelle pile la deuxième fois :

Algorithme 1 : copie(P )

Entrée(s) : P une pile
Sortie(s) : Q copie de P , P reste inchangée

1 T ← Renverser(P );
2 C ← pile vide()// Pile copie

3 tant que T n’est pas vide faire
4 x← T.dépiler();
5 P.empiler(x) ;
6 C.empiler(x) ;

7 retourner C

Q3. L’idée est de sauvegarder P en même temps que l’on calcule la taille, afin de pouvoir
restaurer les éléments à la fin :

Algorithme 2 : taille(P )

Entrée(s) : P une pile
Sortie(s) : taille de P

1 S ← pile vide()// pile de sauvegarde

2 c← 0;
3 tant que P n’est pas vide faire
4 x← dépiler(P );
5 empiler(S, x) ;
6 c← c+ 1;

7 Renverser S dans P ;
8 retourner c

Notons qu’un autre possibilité est de copier la pile P au début, puis de travailler sur la
copie, que l’on a donc pas besoin de sauvegarder :

1 C ← copie(P ) ; c← 0;
2 tant que C n’est pas vide faire
3 x← dépiler(C);
4 c← c+ 1;

5 retourner c

En pratique, ce deuxième algorithme serait un peu plus lent, même s’il reste en complexité
O(n).
Q4. Une première version simple consiste à créer des copies des piles, on peut ensuite les
dépiler sans s’embêter à devoir sauvegarder les valeurs :

On peut aussi mettre en place un mécanisme de sauvegarde comme dans les algorithmes
précédents, ce qui donne une version un peu plus optimisée :

Les deux algorithmes sont en O(n) avec n la somme des tailles des piles, mais le premier
s’exécute toujours en Θ(n) puisqu’il commence par copier les piles, alors que le deuxième
algorithme est plus adaptatif. Par exemple, si les deux piles ont des sommets différents,
le deuxième algorithme va s’exécuter en O(1).

3



Algorithme 3 : Comparer

Entrée(s) : P,Q deux piles
Sortie(s) : Booléen indiquant si P = Q

1 P ′ ← copie(P ) ; Q′ ← copie(Q) ; // Invariant: P = Q si et seulement si

P ′ = Q′ (en notant P0, Q0 les états initiaux)

2 tant que P ′ n’est pas vide ET Q′ n’est pas vide faire
3 x← dépiler(P ′);
4 y ← dépiler(Q′);
5 si x ̸= y alors
6 retourner faux

// Invariant: en sortie, P ou Q est vide, donc P = Q si et seulement

si P ′ ET Q′ sont vides.

7 retourner est vide(P ′) ET est vide(Q′)

Algorithme 4 : Comparer

Entrée(s) : P,Q deux piles
Sortie(s) : Booléen indiquant si P = Q

1 S ← pile vide()// Pile de sauvegarde

// Invariant: P0 = Q0 si et seulement si P = Q (en notant P0, Q0 les

états initiaux)

// Invariant: renverser S sur P donne P0, pareil pour Q et Q0

2 v ← vrai // Les piles sont-elles égales

3 tant que P n’est pas vide ET Q n’est pas vide ET v faire
4 x← dépiler(P );
5 y ← dépiler(Q);
6 si x ̸= y alors
7 v ← faux;
8 empiler(P, x);
9 empiler(Q, y);

10 sinon
11 empiler(S, x)// Remarque: x = y à ce moment

// Invariant: en sortie, s’il n’y a pas eu de cas d’inégalité, alors P
ou Q est vide, donc P0 = Q0 si et seulement si P ET Q sont vides.

12 si NON(est vide(P )) OU NON (est vide(Q)) alors
13 v ← faux;

14 Renverser S sur P et Q;
15 retourner v

4



Q5. Pour réaliser cette opération en O(1) dans l’implémentation par tableaux, il suffit
de se rappeler que dans l’implémentation par tableau, un des attributs de la structure
concrète est précisément la taille de la pile, il suffit alors de renvoyer la valeur de cet
attribut :

1 int taille(pile_t* p){

2 return p->taille;

3 }

Q6. On parcourt la liste en comptant les maillons :

1 int taille(pile_t* p){

2 int l = 0;

3 for (maillon_t* m = p->sommet; m != NULL; m = m->suivant ){

4 l++;

5 }

6 return l;

7 }

Q7. Pour implémenter l’opération taille en O(1) sur les listes châınées, on pourrait ra-
jouter un attribut .taille , que l’on met à jour à chaque opération sur la pile :

1 struct pile {

2 int taille;

3 maillon_t* sommet;

4 }

5 ...

6 void empiler(pile_t* p, int x){

7 p->taille ++;

8 ...

9 }

10 ...

11 int depiler(pile_t* p){

12 p->taille --;

13 ...

14 }

Les complexités des fonctions empiler et dépiler restent O(1), et l’opération taille est
maintenant elle aussi en O(1) !

5


