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Devoir surveille  n° 5 
 

Durée : 3 heures 

 

✓ La calculatrice est autorisée  

✓ Les réponses doivent être justifiées. 

✓ Toute application numérique sans unité ne donnera aucun point. 

✓ Critères de présentation : un malus sera attribué à la copie sur le total selon la règle suivante, -1 si 1 

ou 2 critères non respectés, -2 si 3 ou 4, -3 si 5 ou 6. 

 
Critère Indicateur 

Lisibilité de l’écriture L’écriture ne ralentit pas la lecture. 

Respect de la langue 
La copie ne comporte pas (ou très peu) de fautes 

d’orthographe ou de grammaire. 

Clarté de l’expression 
Le raisonnement de l’élève est compréhensible dès 

la 1ère lecture 

Propreté de la copie 

La copie comporte peu de ratures, les parties à ne 

pas prendre en compte sont soigneusement 

barrées. 

Mise en évidence des résultats Résultats encadrés ou soulignés 

Identification des questions et pagination 

Les différentes parties du sujet sont bien identifiées 

et les réponses sont numérotées avec le numéro de 

la question. La pagination est correctement 

effectuée. 

 

Exercice 1 : Fentes d’Young en incidence oblique 
 

Un système de fentes d’Young est éclairé en incidence oblique 

d’angle θ0 par une onde plane sinusoïdale monochromatique de 

longueur d’onde dans le vide 𝜆0 (Figure ci-contre).  

 

L’onde se propage dans l’air d’indice 𝑛 ≈  1, et on note 𝑠(𝑀, 𝑡) sa 

fonction d’onde. L’onde étant plane : 𝑠(𝐻0, 𝑡)  =  𝑠(𝑂, 𝑡). 

 

L’onde est diffractée en O et en M, et on s’intéresse à deux rayons 

(1) et (2) diffractés dans une même direction quelconque repérée 

par l’angle 𝜃. 

 

Q1. Exprimer le déphasage  𝛥𝜑 =  𝜑(𝑀) −  𝜑(𝐻) entre les phases en 𝑀 et en 𝐻. On n’opèrera aucune 

simplification (les angles ne sont pas petits !). 

 

On ne retient que les interférences constructives à l’infini. 

 

Q2. Etablir la relation qui existe entre les directions 𝜃 notées 𝜃𝑘  (k étant un nombre entier), qui donnent 

des interférences constructives à l’infini, en fonction de 𝜃0, 𝑎 et 𝜆0. 
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Exercice 2 : Ondes gravitationnelles (inspiré de Concours ENS PSI 2017) 

 

 
La détection directe d’ondes gravitationnelles, prévues par la théorie de la gravitation d’Einstein, et 

annoncée le 11 février 2016, a été réalisée à l’aide d’un détecteur fondé sur la notion d’interférence 

lumineuse : l’interféromètre de Michelson. 

 

Une unique source laser de longueur d’onde dans le vide 

𝜆 =  1064 𝑛𝑚 est dirigée vers une lame séparatrice 

semi-réfléchissante inclinée à 45° : cette lame sépare le 

faisceau incident en deux parts égales, l’une la traverse 

sans modification de direction, l’autre se réfléchit sur la 

lame.  

On appelle bras les parties du montage correspondantes 

de longueur respective 𝐿1 et 𝐿2 (voir figure ci contre). 

Chacun des bras est terminé par un miroir plan qui 

renvoie la lumière vers la lame séparatrice. Un détecteur 

en sortie permet d’observer la superposition des ondes 

lumineuses provenant des deux bras de 

l’interféromètre.  

 

La différence de distance parcourue par la lumière dans chacun des deux bras est à l’origine des 

interférences lumineuses observées au niveau du détecteur. 

 

Q3. On considère deux ondes planes (unidimensionnelles) sinusoïdales de même pulsation 𝜔, de 

phases à l’origine 𝜑1 et 𝜑2 et d’amplitudes 𝑆𝑚,1 et 𝑆𝑚,2 . Montrer que la superposition de ces deux 

ondes est une onde sinusoïdale de même pulsation et établir l’expression de son amplitude. 

Q4. A quoi correspondent des interférences constructives ? Destructives ? Exprimer l’amplitude de la 

l’onde résultante dans chaque cas. 

Q5. Rappeler l’expression générale d’une onde progressive sinusoïdale de pulsation 𝜔 et se propageant 

à la vitesse 𝑐. 

Q6. Donner l’expression 𝑠1(𝑡) du signal produit par l’onde sinusoïdale de longueur d’onde 𝜆 issue du 

laser, traversant la séparatrice, s’étant réfléchie sur le miroir 𝑀1 puis sur la séparatrice et 

finalement reçue par le détecteur (on devra exprimer la distance totale parcourue par l’onde à 

l’aide des notations de la figure). 

Q7. Donner de même celle du signal 𝑠2(𝑡)  issue du laser, issu de l’onde se réfléchissant sur le miroir 

𝑀2 et finalement  détectée par le détecteur puis en déduire le déphasage 𝛥𝜑 entre les deux signaux 

(2 par rapport à 1) en fonction de 𝐿1, 𝐿2 et 𝜆. 
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En l’absence d’onde gravitationnelle, on note respectivement 𝐿01, 𝐿02 les longueurs des bras de 

l’interféromètre alignés selon les axes x et y. Suite au passage d’une onde gravitationnelle, les longueurs 

des bras sont modifiées respectivement des quantités minuscules 𝛿𝐿1(𝑡) et 𝛿𝐿2(𝑡) de telle sorte que :  

𝐿1(𝑡)  =  𝐿01  +  𝛿𝐿1(𝑡)  𝑒𝑡 𝐿2(𝑡)  =  𝐿02  +  𝛿𝐿2(𝑡)  

 

La longueur des bras de l’instrument est asservie de façon à ce que :  

 
2𝜋(𝐿01 − 𝐿02)

𝜆
=

𝜙0

2
 

 

où 𝜙0 est une phase dont on déterminera la valeur optimale dans une question ultérieure.  

 

On pose 𝛿𝑥 =  𝛿𝐿1  −  𝛿𝐿2.  

 

Les deux ondes étant issues d’une même source, en l’absence d’atténuation elles ont la même amplitude 

𝑆𝑚,0, elles ont également la même phase à l’origine, et on note 𝐼0  =  4 𝑆𝑚,0
2. 

 

Q8. Exprimer l’intensité 𝐼 (carré de l’amplitude de la superposition) au niveau du détecteur, en 

présence d’une onde gravitationnelle, en fonction de 𝐼0, de 𝑘 =  
2𝜋

𝜆
, de 𝛿𝑥 et de 𝜙0. 

On suppose que 
𝛿𝑥

𝜆
  <<  1, et on rappelle que lorsque 𝜀 <<  1, on peut écrire au premier ordre en 𝜀 : 

𝑐𝑜𝑠 𝜀 ≈  1 et 𝑠𝑖𝑛 𝜀 ≈  𝜀 

Q9. Exprimer 𝐼, au premier ordre en 
𝛿𝑥

𝜆
 et montrer que 𝛿𝐼 =  𝐼(𝛿𝑥)  −  𝐼(𝛿𝑥 =  0) se met sous la forme : 

𝛿𝐼 =  𝐴 𝑠𝑖𝑛 𝜙0  où A est une constante indépendante de 𝜙0 que l’on exprimera. 

Q10. Pour quelles valeurs de 𝜙0 cette variation d’intensité est-elle en valeur absolue maximale ? En 

déduire 𝐿01 − 𝐿02 en fonction de λ. 

Q11. Pour le détecteur Virgo, les bras mesurent 3 km au repos. La perturbation due à l’onde 

gravitationnelle provoque une variation relative infime ℎ =  10−23 de la longueur 𝐿01 (supposons  

𝛿𝐿2 = 0). Donner un ordre de grandeur de 𝛿𝑥 et de la détection relative 
𝛿𝐼

𝐼0
. Conclure. 

 

La puissance du LASER n'est en fait pas rigoureusement constante au cours du temps, mais a tendance a  

fluctuer de façon ale atoire, ce qui fait varier la quantite  𝐼0. Le dispositif pre ce dent est modifie  (non e tudie  

ici) et l'e clairement de pend du temps selon la loi : 

𝐼 (𝑡)   𝐼0 [𝑚
2  + 𝐾 𝛿𝑥 𝑐𝑜𝑠(Ω𝑡) + 𝑚2𝑐𝑜𝑠(2Ω𝑡)]  

ou  𝑚 e t  K  son t  des  parame t re s  const an ts .  

La chaî ne de de tection utilise e transforme ensuite l'e clairement reçu par le de tecteur en une tension 𝑉𝑑(𝑡) 

proportionnelle a  𝐼(𝑡) :  𝑉𝑑(𝑡)  =   𝛾𝐼(𝑡). 

Q12. Expliquer le type de filtrage qu'il convient de faire subir a  𝑉𝑑(𝑡),  pour en extraire la composante 

proportionnelle a   𝛿𝑥. 

Le filtre utilise  est mode lise  par le circuit repre sente  sur la figure 

3. 

La fonction de transfert du montage 𝐻  =  
𝑉𝑠

𝑉𝑒
 peut se mettre sous 

la forme : 

 𝐻  =  
𝐻0

1+𝑗𝑄(
𝜔

𝜔0
−

𝜔0
𝜔

)
 ou   𝐻0 = −

𝑘

2
, 𝜔0 = √

2

𝑘
 

1

𝑅𝐶
 𝑒𝑡 𝑄 = √

𝑘

2
.  
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La tension d'entrée du filtre est la tension délivrée par la chaîne de détection : 𝑉𝑑(𝑡) = 𝑉𝑒(𝑡).  

Q 1 3 .  A quelle condition entre 𝜔0 et Ω le filtre e tudie  est-il le mieux adapte  pour extraire la composante 

« gravitationnelle » du signal 𝑉𝑑(𝑡) ?  

Q 1 4 .  La condition pre ce dente est suppose e remplie. Montrer que le signal de sortie 𝑉𝑠(𝑡) est en fait la 

somme de deux composantes sinusoî dales de pulsations Ω et 2Ω dont les amplitudes, note es 

respectivement 𝐴1 et 𝐴2, seront pre cise es en fonction de , 𝐼0, 𝑚, 𝐾, 𝛿𝑥, 𝑄 𝑒𝑡 𝐻0.  

La tension de sortie 𝑉𝑠(𝑡) est ensuite elle-me me filtre e pour obtenir une tension finale constante, 

de pendant de 𝐼0 et 𝛿𝑥.  

 

Exercice 3 : Etude cinématique du mouvement apparent de Mars 

On s’inte resse dans cette partie a  la comparaison du syste me du monde antique de Ptole me e et au mode le 

he liocentrique de Copernic. 

Le modèle antique géocentrique des épicycles 

 

Dans ce modèle développé par l’astronome Claude Ptolémée au 2e 

siècle de notre ère : 

 

• La Terre est immobile au centre du monde noté O (repère 

galiléen centré en O). 

• Mars se déplace sur un petit cercle de rayon r1 appelé épicycle 

avec la vitesse angulaire uniforme ω1. 

• Le centre C(t) de ce petit cercle tourne autour de la Terre à 

distance r2, avec vitesse angulaire uniforme ω2. 

 

Dans un repère cartésien ℛ(𝑂, 𝒆⃗ 𝑥, 𝒆⃗ 𝑦), Mars assimilé à un corpuscule 𝑀, possède initialement (𝑡 =  0) 

les coordonnées (𝑟1 + 𝑟2, 0). 

Q15. Représenter 𝑶𝑴⃗⃗⃗⃗ ⃗⃗  ⃗(𝑡) sur une figure dans le repère cartésien puis exprimer ce vecteur en 

coordonnées cartésiennes dans la base cartésienne. 

Q16. Exprimer le vecteur accélération 𝒂⃗⃗  de 𝑀 dans ℛ en fonction de 𝑶𝑪⃗⃗⃗⃗⃗⃗  et 𝑪𝑴⃗⃗⃗⃗ ⃗⃗ . En déduire les 

configurations géométriques pour lesquelles 𝑎 =  ||𝒂⃗⃗ || est maximale et exprimer sa valeur𝑎𝑀. 

Q17. Exprimer de même l’accélération minimale 𝑎𝑚. 

Q18. Donner l’équation cartésienne de la trajectoire de 𝑀(𝑥, 𝑦) dans le cas particulier où 𝜔1  =  − 𝜔2. 

Conclure sur la nature de cette trajectoire. 

 

Nous ignorons qui dans l’histoire de l’humanité a introduit le système géocentrique à épicycles, mais une 

des motivations fût certainement de parvenir à expliquer les variations d’éclats des astres sans pour 

autant renonces au cercle qui par sa perfection convenait, dans l’esprit de l’antiquité, aux corps célestes.  

 

Q19. Exprimer 𝑟2(𝑡)  =  ‖𝑶𝑴⃗⃗⃗⃗ ⃗⃗  ⃗‖
2
. En déduire la période des changements d’éclat de Mars prévue par ce 

modèle. 
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Le modèle héliocentrique de Copernic 

 

Dans le référentiel galiléen ℛ𝑐  centré sur le Soleil : 

 

• Mars, assimilé à un corpuscule M, décrit un cercle de rayon 𝑟1, à vitesse angulaire 𝜔1. 

• La Terre, assimilée à un corpuscule T, décrit un cercle de rayon 𝑟2, à vitesse angulaire 𝜔2. 

 

Initialement 𝑀(𝑟1, 0) et 𝑇(𝑟2, 0). 

 

Q20. Exprimer 𝑻𝑴⃗⃗⃗⃗ ⃗⃗ (t) en coordonne es carte siennes dans ℛ𝑐 . 

Q21. Repre senter sur une figure l’angle polaire 𝜃 =  (𝒖⃗⃗ 𝑥, 𝑻𝑴⃗⃗ ⃗⃗ ⃗⃗  ) puis exprimer 𝑡𝑎𝑛 𝜃 en fonction des 

parame tres orbitaux des deux plane tes et du temps. 

 

On dit que Mars rétrograde dans le ciel lorsque son déplacement parmi les étoiles change de sens.  

 

Q22. Quelle condition cela implique-t-il sur (𝑡𝑎𝑛 𝜃)(𝑡) ? Montrer que cette condition se ramène à la 

relation suivante : 𝑐𝑜𝑠[(𝜔1 − 𝜔2)𝑡]  =  𝑓(𝑟1, 𝑟2, 𝜔1, 𝜔2) où 𝑓(𝑟1, 𝑟2, 𝜔1, 𝜔2) est un facteur que l’on 

exprimera en fonction de 𝑟1, 𝑟2, 𝜔1, 𝜔2. 

Q23. Les périodes orbitales et rayons orbitaux de Mars et de la Terre sont respectivement : 𝑟1  =   1,5 𝑈𝐴, 

𝑟2  =   1 𝑈𝐴, 𝑇1  =  1,9 an 𝑒𝑡 𝑇2  =  1 an. Calculer numériquement 𝑓.  

Q24. Représenter graphiquement 𝑔(𝑡)  =  𝑐𝑜𝑠[(𝜔1 − 𝜔2)𝑡]. Sachant que Mars est déjà en rétrogradation 

à la date t = 0, en déduire l’expression de la durée 𝜏𝑟  de rétrogradation de Mars. 

Q25. Calculer numériquement 𝜏𝑟  en jours. 

 
 
Approximation d'une orbite elliptique par un épicycle par Copernic 

 

En réalité, l’orbite de Mars est elliptique. Copernic l’ignorait, et pour 
construire son système héliocentrique, il a conservé un épicycle ainsi 
qu’indiqué sur la figure ci-contre, pour lequel 𝑟1  <<  𝑟2.  
 

On rappelle que lorsque |𝜀|  <<  1 : (1 +  𝜀)𝛼  ≈  1 +  𝛼 𝜀. 

 

Q26. Exprimer 𝑟2 en fonction de 𝑟1, 𝑟2 et 𝜑 en négligeant 𝑟1
2 devant 𝑟2

2. 

Q27. On pose 𝜀 =  
𝑟1

𝑟2
 <<  1. Exprimer 𝑟 en fonction de 𝑟2, 𝜑 et 𝜀. En déduire que 𝑟 ≈  𝑟2  +  𝑟1 ℎ(𝜑) où 

ℎ(𝜑) est une fonction que l’on déterminera. 

 

La trajectoire elliptique réelle de Mars s’écrit, dans ℛ𝑐 , avec l’excentricité de l’orbite 𝑒 ≈  0,093 et un 
paramètre 𝑝 : 

𝑟(𝜑)  =  
𝑝

1 − 𝑒 𝑐𝑜𝑠𝜑
 

Q28. Est-il est possible de décrire l’orbite de Mars à l’aide de deux épicycles ? Si oui, exprimer les rayons 

𝑟1 et 𝑟2 en fonction de 𝑒 et 𝑝. 

 

 

FIN 
 


