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Dynamique du point matériel 

 

Exercice 1 : Viscosimètre à bille    ☆☆ 
 

 
✓ Poussée d’Archimède 
✓ Frottements fluides linéaires 
✓ Mouvement rectiligne 

 

On étudie la chute d’1 bille sphérique en acier de masse volumique  = 7800 kg.m-3 et de rayon r = 1 mm dans de 

la glycérine (de masse volumique f = 1260 kg.m-3 et de viscosité  = 1,2 Pa.s). On admet que la vitesse de la chute 

est suffisamment faible pour modéliser la force de frottement par 1 loi linéaire et que le coefficient de frottement 

fluide  est tel que  = r. A t = 0, on lâche la bille sans vitesse initiale. 

1) Faire le bilan des forces qui s’exercent sur la bille et en déduire l’équation différentielle vérifiée par la vitesse. 
On posera  = V/ avec V le volume de la bille. 

2) Résoudre. 
3) Déterminer la vitesse limite de chute. 
4) Expliquer le principe d’un viscosimètre.  
 

 

 

 

 

 

Exercice 2 : Mécanique des avalanches    ☆☆ 
 

 
✓ Réaction du support 
✓ Mouvement rectiligne 

 
Dans une avalanche, une masse de neige se de tache sur une pente et la de vale en entraî nant avec elle de la 
matie re supple mentaire. Il en re sulte une amplification qui conduit a  un phe nome ne violent me me a  partir d’un 
de se quilibre faible. 

On conside re un bloc de neige de masse m reposant sur un plan incline  

dont la pente est repe re e par l’angle . Le contact entre la neige et ce plan, 

de crit par les lois de COULOMB sur le frottement, est caracte rise  par des 

coefficients de frottement statique s et dynamique D. On rappelle que D 

< s. On e tudie le mouvement dans le re fe rentiel terrestre suppose  

galile en. On note g = 9,8 m.s-2 l’acce le ration de la pesanteur. 
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1) Montrer que l’e quilibre est possible tant que  < c et exprimer l’angle critique c. 

2) La masse de neige en e quilibre sur une pente d’angle c subit une le ge re perturbation qui lui donne une 

vitesse initiale 𝑣0𝑢𝑥⃗⃗⃗⃗  avec v0 > 0. En appliquant le principe fondamental de la dynamique, exprimer dv/dt en 

fonction des diffe rents parame tres du proble me. 
3) En de duire l’expression de la vitesse v(t). 
4) L’e nergie acquise sert en fait a  mettre en mouvement de nouveaux blocs de neige, conduisant a  

l’amplification de l’avalanche. Les valeurs approximatives de s et D sont donne es dans le tableau ci-
dessous pour diffe rents types de neige. Commenter en utilisant les questions pre ce dentes. Quel type de 
neige conduit aux avalanches les plus violentes ? On justifiera la re ponse. 

5) Anime e d’une vitesse v1, la masse de neige arrive dans une re gion ou  l’angle  prend une valeur plus faible, 

constante. A quelle condition portant sur  le mouvement est-il ralenti puis stoppe  ? APPLICATION NUMERIQUE 

: exprimer cette condition pour les trois types de neige. 
 

 

Exercice 3 : Descente en luge    ☆ 
 

 
✓ Réaction du support 
✓ Mouvement circulaire 

 

On assimile un ensemble {luge + lugeur} à un point matériel M de masse m = 100 kg. La piste est considérée 

comme un référentiel galiléen. L'accélération de la pesanteur est prise égale à g = 10 m.s-2.  

Descente rectiligne :  

Après la phase de poussée, la luge atteint une vitesse v0 = 5,0 m.s-1. Elle descend 

ensuite une piste rectiligne de pente constante, inclinée de 10% (on descend 

verticalement de 10 m quand on avance horizontalement de 100 m). On appelle 

 l'angle que fait la piste avec l'horizontale. Les frottements sont négligés devant 

les autres forces en jeu. Le point M est ainsi en mouvement rectiligne 

uniformément accéléré. 

1) Exprimer et calculer numériquement l'accélération a de la luge en fonction de l'accélération de la pesanteur 
g et de l'angle . 

2) L'origine des temps est fixée juste après la phase de poussée. Donner l'expression de la vitesse en fonction 
du temps. Au bout de quelle durée ta la luge atteint-elle la vitesse va = 30 m.s- 1 ? Application numérique. 

3) Quelle est la distance parcourue lorsque la luge atteint la vitesse va ? Application numérique. 
 

Virage circulaire : 

M est maintenant en mouvement circulaire uniforme à la vitesse V, sur un 

cercle de rayon . La piste est inclinée latéralement d'un angle     La 

trajectoire se situe dans un plan horizontal :𝑣→ = 𝑉 𝑢𝜃
→ . Le trièdre de vecteurs 

unitaires (𝑢𝑟,
→ 𝑢𝜃
→ 𝑢𝑧
→ ) est orthonormé direct. On désigne par 𝑅

→
= 𝑅𝑛 𝑛

→ + 𝑅𝑡 𝑡
→

 

la réaction de la piste, qui n'est plus uniquement normale. Les vecteurs 
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unitaires n  (normal) et t  (tangent) sont définis sur la figure de droite ci-dessous.  

 

4) Exprimer l'accélération 𝑎→ en fonction de 𝑉, 𝜌 et de 𝑢𝑟
→ .  Justifier physiquement le sens de l'accélération. 

5) La luge n'étant soumise qu'à son poids et à la réaction du support, écrire la relation fondamentale de la 

dynamique en projection dans le repère (𝑛→, 𝑡
→

). 
6) En déduire les expressions des réactions 𝑅𝑛 et 𝑅𝑡  en fonction de V, ,   g et m. 
7) Soit 𝑓 =  0,4 le coefficient de frottement de la luge sur la piste de glace. Les lois du frottement solide 

indiquent que la luge ne dérape pas tant que |𝑅𝑡|  ≤  𝑓 𝑅𝑛. Dans la suite des questions, un dérapage possible 
vers l’extérieur du virage, soit 𝑅𝑡 > 0. 
a) Montrer que 𝑉2 doit respecter l’inégalité suivante pour éviter le dérapage : 

𝑉2 (𝑐𝑜𝑠 𝛽 −  𝑓 𝑠𝑖𝑛 𝛽)  ≤  𝑔 𝜌(𝑠𝑖𝑛 𝛽 +  𝑓 𝑐𝑜𝑠 𝛽) 
b) En déduire que si l’inclinaison β est suffisante, il n’y aura jamais dérapage quelle que soit la vitesse 𝑉. 

Donner l’inclinaison minimale à respecter, qui dépend uniquement du coefficient 𝑓. Faire l’application 
numérique en degrés. 

 
 

Exercice 4 : Parabole de sûreté    ☆ 
 

 
✓ Mouvement dans le champ de pesanteur 

 
On s’intéresse au mouvement (dans le référentiel terrestre) d’un projectile dans le champ de pesanteur terrestre, 

en l’absence de frottement. Il est toujours lancé avec une vitesse de même norme 𝑣0 mais de direction variable.  

1) Retrouver l’équation de la trajectoire si le point est lancé de l’origine du repère cartésien avec une vitesse 

initiale faisant un angle α avec l’horizontale.  

2) En supposant la norme 𝑣0 constante mais l’angle α variable, établir l’équation de la courbe dans le plan 

séparant les points pouvant être atteints de ceux qui ne le seront jamais. Justifier le terme de parabole de 

sûreté. 

 

 

Exercice 5 : Saut d’un ressort    ☆ 
 

 
✓ Rection du support 
✓ Force de rappel élastique 

 

Deux masses ponctuelles sont placées aux extrémités d’un ressort élastique de longueur à vide 𝑙0 et de raideur 

𝑘. Le point 𝐴 de masse 𝑀 est en contact avec le sol. Le point 𝑃 de masse m est situé à l’extrémité supérieure. On 
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suppose que les masses se déplacent uniquement le long de l’axe vertical (𝑂𝑥). Dans un premier temps on 

suppose que le point A est fixe.  

1) Déterminer la longueur du ressort à l’équilibre.  

2) À la date 𝑡 = 0 on lance le point  𝑃 verticalement, vers le haut, avec une vitesse 𝑣0, depuis sa position 

d’équilibre. On définit l’origine 𝑂 du repère au niveau de cette position d’équilibre.  

3) Établir l’équation différentielle vérifiée par la position 𝑥(𝑡) du point 𝑃. Exprimer la période des oscillations. 

4) Déterminer 𝑥(𝑡) à tout instant 𝑡 >  0. Quelle est l’amplitude des oscillations ?  

Dans les questions qui suivent on cherche à savoir si la masse 𝑀 située en 𝐴 peut décoller du sol.  

5) Faire le bilan des forces extérieures qui s’exercent sur le point 𝐴.  

6) Exprimer en fonction du temps la réaction du sol sur le point 𝐴, tant que le contact est maintenu.  

7) Montrer que 𝐴 décolle à condition que 𝑃 soit lancé avec une vitesse initiale supérieure à une valeur 𝑣𝑚 que 

l’on exprimera en fonction des données du problème. 

 


