
Premiers programmes en OCaml

Guillaume Rousseau
MP2I Lycée Pierre de Fermat
guillaume.rousseau@ens-lyon.fr

14 janvier 2026

Introduction

OCaml est un langage de programmation développé dans les années 1980-1990, en France,
par des chercheurs et chercheuses de l’INRIA 1. C’est un langage fonctionnel, présentant des
liens forts avec la logique et la théorie de la déduction, ce qui en fait un langage couramment
utilisé dans ces domaines de recherche. Il a par exemple été utilisé pour écrire le logiciel Rocq,
un assistant de preuve permettant de fournir des démonstrations formelles de théorèmes, et de
montrer la correction de programmes. Rocq et OCaml ont été utilisés pour écrire et prouver
le compilateur C CompCert : ce compilateur génère des programmes à peine plus lents que
GCC, mais est garanti sans bug 2.

Le langage donne beaucoup de garanties de sûreté, notamment comparé au C, mais reste
relativement performant, il est donc parfois utilisé en industrie pour les systèmes critiques
(aéronautique, nucléaire, ...). Facebook utilise également OCaml en interne, et a même développé
son propre langage, Reason, mélangeant les notions clés d’OCaml avec des éléments de syntaxe
de javascript.

Langage impératif, langage fonctionnel Le C est un langage impératif. Cela signifie
qu’un programme C est constitué d’instructions, qui disent à la machine ce qu’elle doit faire.
En programmation impérative, on parle d’état du programme (la mémoire, les variables), et
les instructions servent à modifier l’état du programme.

OCaml est un langage fonctionnel. La programmation fonctionnelle est un autre para-
digme de programmation, dans laquelle un programme est une immense expression mathématique
que l’on évalue. Dans une telle expression, on peut faire intervenir des fonctions, qui sont des
valeurs au même titre que les entiers, les flottants ou les châınes de caractères.

Dans un langage fonctionnel, il n’y a donc ni variable, ni boucle. Notons qu’OCaml est un
langage fonctionnel dit impur, car il permet tout de même d’utiliser des éléments de program-
mation impérative, mais certains langages, comme le Haskell, sont purement fonctionnels !

1. Institut national de recherche en informatique et en automatique
2. Si l’on suppose que Rocq est lui-même correct !

MP2I Pierre de Fermat 2025-2026 2/36

1. PREMIERS PROGRAMMES

1 Premiers programmes

Un programme OCaml peut être compilé comme du C, ou interprété comme du Python.

ocamlc est le compilateur usuel utilisé pour OCaml. Les fichiers OCaml auront pour ex-
tension “.ml”. Pour compiler un programme “mon programme.ml”, on tape :

ocamlc mon_programme.ml -o nom_executable

Comme avec gcc, si l’on ne précise pas de nom d’exécutable, celui-ci s’appellera a.out.
Pour lancer l’interpréteur OCaml, on peut utiliser la commande ocaml, mais on préfèrera

utiliser utop qui est un interpréteur plus pratique, avec un historique, de l’auto-complétion,
etc... Pour indiquer la fin d’une expression dans l’interpréteur, on utilise ;; .

Remarque 1

Dans utop, à tout moment, on peut taper CTRL+C pour arrêter la ligne actuelle (en cas
de boucle infinie par exemple). On peut aussi taper CTRL+D pour quitter utop.

Q1. Lancer utop

Q2. Taper les expressions suivantes (sans oublier ;; à chaque fois) :

— 5

— 5.67

— true

— 'h'

— "bonjour"

— ()

On remarque que lorsqu’on tape une valeur, OCaml détecte tout seul le type, et nous
l’affiche. En Ocaml, les types de base sont int , float , bool , char , string et unit :

Comparons avec le C :

— bool n’est pas compatible avec les entiers, c’est un type à part

— string est un type totalement distinct de char .

— unit est l’équivalent du type void . Il possède un unique élément, noté () (et aussi
prononcé “unit”).

A Opérateurs

Comme tous les langages de programmation, OCaml possède des opérateurs sur les types
de base : additions, soustractions, tests d’égalité, d’inégalité, opérations booléennes, etc...

Q3. Taper les expressions suivantes :

— 3+8

— 5 = 2+3

— 9.36 < 1.2

— not true

— true && false

— true || false

3/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

— "bonjour "^ "tout le monde"

Q4. Taper les expressions suivantes :

— 3.65 + 9

— 3.65 + 2.35

Que constate-t’on ?

En OCaml, le typage est strict. En particulier, les int et les float ne peuvent pas être
mélangés. Pour additionner des flottants, on doit utiliser l’opérateur +. et idem pour la mul-
tiplication, la division, la soustraction.

Q5. Taper les expressions suivantes :

— 2.0 +. 0.5

— 5. /. 2.

B Arbre de syntaxe

Un programme OCaml est une expression mathématique, que l’on peut représenter sous
une forme graphique appelée “arbre de syntaxe”. Voici quelques exemples d’expressions et
leurs arbres de syntaxe :

On peut donc définir formellement une expression OCaml comme suit :

Définition 1

Une expression OCaml est :

— Une constante d’un type de base (1, 2, false, true, 3.48, 0.23, ...)

— Un opérateur binaire appliqué sur deux expressions OCaml de types compatibles
(1 + 2 , (5-3)+ 4 , (1 = 2)||false , ...)

— Un opérateur unaire appliqué sur une expression OCaml de type compatible (-12 ,
-(2.32 +. 0.5) , not (2 < 5))

Cette définition est partielle, on viendra la compléter au fur et à mesure que l’on ren-
contre de nouveaux éléments de syntaxe d’OCaml.

Une première remarque : cette définition est “récursive” car on définit ce qu’est une expres-
sion en fonction des expressions. La terminologie exact est que c’est une définition inductive
(Cf prochain chapitre).

MP2I Pierre de Fermat 2025-2026 4/36

1. PREMIERS PROGRAMMES

Notons aussi qu’avec cette définition, il est ambigu de savoir si 1 + 2 + 3 veut dire (1+2)+3

ou bien 1+(2+3) : il y a deux arbres de syntaxe possibles. Par associativité de l’addition, on
peut choisir arbitrairement l’un ou l’autre. Si l’on considère l’expression 1 + 2 * 3 , il n’y a pas
ambigüıté grâce à la précédence des opérateurs : la multiplication est prioritaire sur l’addition,
l’expression doit donc être comprise comme 1 + (2 * 3) .

C Fonctions

Revenons au mélange d’entiers et de flottants. Pour passer de l’un à l’autre, il faut utiliser
des fonctions : float_of_int et int_of_float . En OCaml, L’application de fonction se
fait en écrivant la fonction puis l’argument, séparés d’un espace, sans besoin de
parenthèses.

Q6. Taper :

— float_of_int 3

— int_of_float 6.3

— float_of_int 3 +. 6.21

On remarque que la dernière expression est comprise comme (float_of_int 3)+. 6.21 et pas

float_of_int (3 +. 6.21) . On dit que l’application de fonction est prioritaire sur l’addition.
L’application de fonction est en réalité prioritaire sur (presque) tout.

En OCaml, les parenthèses ne servent pas à faire des appels de fonction ! Les
parenthèses servent uniquement à regrouper une expression pour la rendre “d’un seul te-
nant”. Il est donc inutile d’écrire float_of_int(5) car 5 est déjà d’un seul tenant, on peut donc

écrire float_of_int 5 sans parenthèses. En revanche, lorsque l’on écrit float_of_int (5 + 2) ,
les parenthèses sont nécessaires.

Définition 2

On dit qu’une expression est atomique si c’est :

— une constante (1, 2, 3.24, true, ...)

— un identifiant (x , y , ...)

— une expression entre parenthèses ((2 + 3), ...

OCaml étant un langage fonctionnel, les fonctions sont des valeurs comme les autres :

Q7. Taper les expressions suivantes :

— int_of_float

— float_of_int

Pour la dernière expression, l’interpréteur affiche :

- : int -> float = <fun>

Dans un type, la flèche -> se lit ”flèche” ou ”donne”. Une fonction de type A -> B prend
en entrée un élément de type A et calcule un élément de type B. Par exemple, float_of_int

prend un int et donne un float.

On peut donc étendre notre définition des expressions OCaml :

5/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

Définition 3

Sont également des expressions OCaml :

— Une expression OCaml entre parenthèses

— Deux expressions OCaml atomiques mises l’une après l’autre.

Le dernier cas correspond à une application de fonction.

Dans les arbres de syntaxe, on pourra par exemple représenter les applications de fonction
par le mot App. On pourra traiter une application comme une sorte d’opérateur binaire.

MP2I Pierre de Fermat 2025-2026 6/36

1. PREMIERS PROGRAMMES

Exemple 1

Voici l’arbre de syntaxe de l’expression float_of_int (3 + int_of_float (2.5 *. 2.1))

En OCaml, on peut créer ses propres fonctions. Par exemple, la fonction f : x 7→ x+ 1 :

1 (fun x -> x + 1)

Pour appliquer cette fonction à une autre expression, par exemple (5 + 3), on écrira donc :

1 (fun x -> x + 1) (5 + 3)

ce qui affiche bien 9. OCaml vérifie toujours que le type de l’argument d’une fonction
correspond bien au type attendu. Par exemple, l’expression suivante génèrera une erreur :

1 (fun x -> x + 1) 0.5

On peut donc mettre à jour notre définition des expressions :

Définition 4

Si A est une expression, alors fun x -> A est également une expression. Une telle expression
s’appelle une abstraction.

Dans les arbres de syntaxe, on pourra représenter les abstraction par le mot Fun.

Exemple 2

Voici l’arbre de syntaxe de l’expression (fun x -> x + 1)(5 + 3)

7/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

D Évaluation des expressions, environnements

Dans un langage impératif, on dit que l’on exécute une suite d’instructions. Dans langage
fonctionnel comme OCaml, on dit que l’on évalue une expression. Évaluer une expression, c’est
la transformer en une valeur. Par exemple, lorsque l’on transforme 3 + 2 en 5, on a évalué
l’expression

Considérons l’expression 3 + 2 . Cette expression est de type “un opérateur binaire appliqué
sur deux expressions”. On commence donc par évaluer les deux sous-expressions : 3 et 2 . Ces
deux expressions sont des constantes, elles s’évaluent donc en elles-même. On applique alors
l’opérateur + sur les deux valeurs obtenus, on obtient 5.

Considérons maintenant l’expression (3 + 2)* (1 - 4) . Cette expression est de type “un
opérateur binaire appliqué sur deux expressions”. On commence donc par évaluer les deux sous-
expressions : (3 + 2) et (1 - 4) . Pour évaluer la première, on fait comme précédemment, on
obtient alors 5, et de manière analogue, la deuxième expression s’évalue en −3. Alors, l’expres-
sion initiale s’évalue en −15.

On peut donc donner un algorithme simple permettant d’évaluer une expression OCaml :

Algorithme 1 : Évaluation

Entrée(s) : Un arbre de syntaxe OCaml, c’est à dire une expression E
Sortie(s) : La valeur obtenue en évaluant E

1 si E est une constante c alors
2 retourner c

3 si E est de la forme E 1 + E 2 alors

4 v1 ← Évaluer E1;

5 v2 ← Évaluer E2;
6 retourner v1 + v2

7 si E est de la forme E 1 - E 2 alors

8 v1 ← Évaluer E1;

9 v2 ← Évaluer E2;
10 retourner v1 − v2

// Ainsi de suite

Intéressons nous maintenant à l’expression (fun x -> x+1)(5+3) Étudions la manière dont
OCaml évalue cette expression. Pour commencer, on évalue 5+3 ce qui donne 8. Ensuite, on
doit appliquer la fonction à l’argument 8. Pour cela, on stocke quelque part l’information “ x

vaut 8”, et on évalue le corps de la fonction : x + 1 . On doit donc évaluer x , et avec l’infor-
mation que l’on a stocké, on sait que le résultat est 8. Ainsi, on évalue x + 1 à 9, et c’est le
résultat de l’expression initiale.
Ainsi, lorsque l’on évalue une expression OCaml, on doit stocker des informations sur les
différentes variables. L’objet servant à stocker ces informations s’appelle un environnement
ou un contexte.

Exercice 1

Dessiner l’arbre de syntaxe de l’expression 2 * 3 + (2 - 1 / 3) , et lui appliquer l’algo-
rithme d’évaluation.

MP2I Pierre de Fermat 2025-2026 8/36

1. PREMIERS PROGRAMMES

Définition 5

Un environnement est un ensemble d’associations de la forme x 7→ v, où x est un
identifiant (i.e. un nom de variable) et v une valeur.

Étant donné E une expression et ρ un environnement, on peut évaluer E dans ρ. Modifions
notre algorithme d’évaluation pour prendre en compte l’environnement :

Algorithme 2 : Evaluer(E, ρ)

Entrée(s) : E un arbre de syntaxe, ρ un environnement
Sortie(s) : La valeur obtenue en évaluant E dans ρ

1 si E est une constante c alors
2 retourner c

3 si E est une variable v alors
4 retourner la valeur associée à v dans ρ

5 si E est de la forme (fun x -> E 1) E 2 alors
6 v2 ← évaluer E2 dans ρ;
7 ρ′ ← ρ mis à jour avec x 7→ v2;
8 retourner Evaluer(E1, ρ

′)

9 si E est de la forme E 1 + E 2 alors
10 v1 ← Evaluer(E1, ρ);
11 v2 ← Evaluer(E2, ρ);
12 retourner v1 + v2

// Ainsi de suite pour les autres opérateurs binaires...

Exercice 2

Pour chacune des expressions suivantes, dessiner l’arbre de syntaxe, et appliquer l’algo-
rithme d’évaluation à partir d’un contexte vide.

1 (fun a -> a +. 3.) 6.;;

2 (fun x -> x + (fun y -> x*y)(x+1)) ((fun x->6-x) 3);;

E Fonctions d’ordre supérieur

Considérons la fonction suivante :

1 fun f -> 2 * f 2

Si l’on tape l’expression précédente dans utop, l’interpréteur nous dit que le résultat est
de type (int -> int)-> int . Cette fonction prend donc en paramètre une fonction de type
int -> int , et renvoie un entier. Par exemple :

1 (fun f -> 2 * f 2) (fun x-> x + 1) ;;

Q8. Dessiner l’arbre de l’expression précédente et appliquer l’algorithme d’évaluation.

Q9. En langage naturel, que fait la fonction fun f -> 2 * f 2 ?

9/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

Définition 6

On dit qu’une fonction est d’ordre supérieur si elle prend en argument une fonction ou
renvoie une fonction.

Exercice 3

Décrire les fonctions suivantes en français.

1 fun f -> (fun x -> f (f x)) ;;

2 fun f -> (fun x -> (f (x +. 0.00001) -. f x) /. 0.00001) ;;

3 fun k -> (fun y -> k*y) ;;

F Syntaxe “let in”

Il va vite être compliqué de construire des expressions lisibles. Afin de rendre le code
plus digeste, on utilise en OCaml une syntaxe qui ressemble aux affectations de variable
des programmes impératif. Cette syntaxe est construite avec les deux mots-clés let et in .
Par exemple :

1 let x = 2 in

2 x + 3;;

Pour évaluer une expression de la forme let x = e1 in e2 , on évalue e1 en une valeur v1
puis on évalue e2 dans l’environnement (x 7→ v1). La preuve que ce n’est pas une affectation
de variable est que si l’on essaie d’évaluer x après avoir tapé cette expression, on obtient une
erreur car x n’est pas connu. En réalité, x n’existe dans le contexte que lors de l’évaluation de
la partie droite du let in.

Remarque 2

let x = e1 in e2 est un raccourci pour dire (fun x -> e2)e1;; . Lorsqu’une syntaxe sert
simplement à raccourcir le code, ou à faciliter son utilisation, sans rajouter de fonctionnalité,
on dit que c’est du sucre syntaxique.

On peut imbriquer les let in comme on veut :

Q10. Taper les expressions suivantes :

1 let x = 3 in

2 let y = 5 in

3 x + y;;

4
5 let x =

6 let t = 3.2 in

7 t *. 5.0

8 in (x < 31.0);;

Lorsque l’on écrit let x = A in B , on peut voir ça comme rajouter au contexte une valeur
pour x, avant de calculer B. Quand on met plusieurs let in à la suite, par exemple

1 let x = 3 in

2 let y = 5 in

3 x + y;;

MP2I Pierre de Fermat 2025-2026 10/36

1. PREMIERS PROGRAMMES

on construit le contexte en y ajoutant petit à petit des informations sur les variables.
Dans les programmes OCaml et dans l’interpréteur, il existe un contexte global. Pour ra-

jouter une valeur au contexte global dans l’interpréteur, il suffit de remplacer le “in” par “ ; ;”.

Q11. Taper le code suivant dans utop :

1 let x = 3;;

2 let y = 5;;

3 x + y ;;

4 let f = fun z -> (x + z);;

5 f 1;;

6 let x = 50;;

7 f 1;;

Q12. Que remarque-t’on avec les 4 dernières lignes ?

Remarque 3

let signifie “soit” en anglais, donc let x = ... ;; se dirait en français “soit x égal à ...”.
Cette syntaxe est donc inspirée du vocabulaire mathématique.

Pour les fonctions, il existe un deuxième niveau de sucre syntaxique, qui consiste à éliminer
le mot clé fun et la flèche.

Q13. Taper le code suivant :

1 let f = fun x -> x * x ;;

2 let g x = x * x;;

Regardons la fonction suivante :

1 let add x = fun y -> x + y;;

cette fonction est de type int -> (int -> int) . Autrement dit, elle prend en entrée un
entier, et renvoie une fonction. Pour k entier, add k est la fonction qui ajoute k à son argument.
Donc, on peut écrire :

1 let f = add 3;;

2 let x = f 5;;

ou même :

1 let x = (add 3) 5;;

En OCaml, le parenthésage se fait automatiquement à gauche. Autrement dit, les deux
expressions suivantes sont équivalentes :

1 (add 3) 5;;

2 add 3 5;;

Reprenons la fonction add . On peut utiliser un nouveau niveau de sucre syntaxique et la
définir comme suit :

1 let add x y = x + y;;

Formellement, cela veut dire que la fonction add prend un argument x , et renvoie une
fonction qui prend elle même un argument y , et qui renvoie x+y. Informellement, on dira que

add prend deux arguments, x et y. Cependant, c’est un abus de langage !

11/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

G Type d’une fonction

Pour une fonction f définie par let f x1 x2 ... xn = e , OCaml donne une signature à
f , qui correspond aux types des paramètres et de la valeur calculée. Par exemple :

1 let ma_fonction f x y = f (x + y) + f(x - y);;

Cette ligne affiche :

val ma_fonction : (int -> int) -> int -> int -> int = <fun>

On peut lire cette ligne comme :

— ma_fonction prend 3 paramètres :

1. Une fonction de type int -> int

2. Une valeur de type int

3. Une valeur de type int

— ma_fonction renvoie une valeur de type int

H Typage

On a pu remarquer depuis le début du chapitre qu’OCaml peut deviner les types des ex-
pressions, grâce à un système appelé l’inférence de type. Écrivons le code de la fonction
identité, qui renvoie son entrée :

1 let f x = x;;

Le type de cette fonction est 'a -> 'a . Cette notation un peu particulière veut dire : “pour
tout type α, on peut donner à la fonction le type α → α”. Contrairement au C, en OCaml,
une fonction peut prendre et renvoyer plusieurs types totalement différents. Par exemple, la
fonction identité peut prendre n’importe quel type et renvoie une valeur du même type que son
entrée.

Définition 7

On dit qu’une fonction est polymorphe si elle peut prendre en entrée et renvoyer plusieurs
types.

On dit qu’OCaml utilise le polymorphisme de type.

Introduisons une nouvelle syntaxe : (x1, x2, ..., xn) . En OCaml, comme en Python, on
peut créer des tuples. Regardons le type des tuples :

Q14. Taper les expressions suivantes et regarder leur type :

1 let p1 = (1, 2, 3) ;;

2 let p2 = (1, 'a', "toto", 4);;

3 let diago x = (x, x);;

Si e1, e2, . . . , en sont des expressions de types respectifs t1, t2, ..., tn , alors le tuple
(e1, e2, . . . , en) est de type t1 * t2 * ... * tn . On dit que c’est un type produit.

Pour utiliser un tuple, il est nécessaire de le déstructurer. Cela signifie que l’on va extraire
du tuple les différentes composantes. Par exemple :

1 let p1 = (1, 2, 3) ;;

2 let (x, y, z) = p1;;

MP2I Pierre de Fermat 2025-2026 12/36

1. PREMIERS PROGRAMMES

On a déstructuré p1 en utilisant un tuple de variables ayant la même structure :

(x, y, z) . Lorsque l’on déstructure ainsi un tuple, ou n’importe quelle autre type (cf plus

loin), on parle de let déstructurant.

On peut également déstructurer des tuples directement dans les paramètres d’une fonction.
Par exemple, les deux fonctions suivantes sont équivalentes :

1 let echange1 p =

2 let (x, y) = p in (y, x)

3
4 let echange2 (x, y) = (y, x)

Il faut bien noter que les deux fonctions ont la même signature : ('a * 'b)-> ('b * 'a) .

Ces deux fonctions prennent donc un seul argument, de type ('a * 'b) .

13/36 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

I Récapitulatif

Pour faire des commentaires en OCaml, on les entoure par (* *) . Par exemple :

1 (* produit de x et y *)

2 let mul x y = x * y

Revoyons toutes les notions vues jusqu’ici :

— Les types de base : int, float, bool, char, string, unit

— Les opérations sur ces types : comme en C. Le non booléen se note not et les opérateurs
flottants nécessitent un point : +. au lieu de + et idem pour les autres.

Type t Opérateurs binaires pour t Opérateurs unaires
pour t

Type de l’expression
composée

int + , - , * , / , mod - int

float +. , -. , *. , /. , ** (puissance) -. float

Tous > , >= , = , < , <= , <>

(“différent de”)
bool

bool && , || not bool

char

string ^ (concaténation) string

— On peut ajouter une variable au contexte globale avec let x = ... ;; et ajouter une
variable dans un contexte local avec let x = ... in ...

— On peut définir des fonctions avec la syntaxe suivante :

1 let f x1 x2 ... xn =

2 ...

— On applique une fonction avec :

1 f e1 e2 ... ek

où e1, e2, ... ek sont des expressions ayant des types compatibles avec la signature de
la fonction f .

— Les parenthèses servent à encadrer les sous-expressions et pas à appliquer les fonctions

Voici un exemple de programme mettant en oeuvre ces différentes notions :

1 let x = 3;;

2 let y = 5;;

3 let z = 3 * 5 ;;

4
5 (* composée de f et g, i.e. la fonction h

6 telle que h(x) = f(g(x)) *)

7 let composition f g =

8 fun x -> f (g x);;

9
10 (* double de x *)

11 let double x = 2*x;;

12
13 let u = composition double int_of_string ;;

14 let a = u "12";; (* vaut 24 *)

15
16 let quadrupler = composition double double;;

17 let b = quadrupler 5;; (* vaut 20 *)

MP2I Pierre de Fermat 2025-2026 14/36

1. PREMIERS PROGRAMMES

Quiz Pour chacune des expressions suivantes, prédire son type et sa valeur :

1 (* Q1 *)

2 let g x = 2*x in

3 let f x = g x + 1 in

4 f 5 + f 3;;

5
6
7 (* Q2 *)

8 let double x = 2*x in

9 let triple x = 3*x in

10 double (triple 5);;

11
12 (* Q3 *)

13 let s = "bonjour " in

14 let saluer x = s ^ x ^ " !!" in

15 let s = "salut " in

16 saluer "Jérémy";;

17
18 (* Q4 *)

19 let f x y z = (x z) (y z) in

20 let g x = let x = x - 1 in x * x in

21 let h x = fun y -> let x = y in x+1 in

22 f h g 3;;

23
24 (* Q5 *)

25 let u f (x, y) = f x y in

26 let g = u (fun x -> (fun y -> x y)) in

27 g ((fun a -> a+3), 5);;

15/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

2 Éléments de base d’OCaml

Étudions plusieurs éléments du langage OCaml. Pour chaque nouvel élément, on regardera :

— Un exemple simple ;

— La syntaxe ;

— Le typage, c’est à dire les règles à appliquer pour typer l’expression ;

— La sémantique, c’est à dire la manière dont on évalue la valeur de l’élément.

A If-then else

Comme tous les langages, OCaml dispose d’une construction if-then-else :

1 (* Renvoie le maximum entre x et y *)

2 let maximum x y =

3 if x < y then y

4 else x

5
6 (* applique un ET logique sur a et b deux booléens*)

7 let logic_and a b =

8 if a then b else false

La syntaxe est la suivante :

1 if E1 then E2 else E3

où E1, E2 et E3 sont des expressions.

Pour le typage, l’expression E1 doit être du type bool , et les expressions E2 et E3 doivent
être du même type T, et alors l’expression totale est de type T également.

Pour la sémantique, voici comment évaluer la valeur de if E1 then E2 else E3 :

1. Évaluer E1 en une valeur v1

2. Si v1 est true , évaluer E2

3. Sinon, évaluer E3

Comme les deux branches du if-else doivent avoir le même type, on ne peut pas avoir de if
sans else. Une exception : le type unit :

1 if true then ();;

2 if x < y then print_int x;;

MP2I Pierre de Fermat 2025-2026 16/36

2. ÉLÉMENTS DE BASE D’OCAML

B Matching

Les mots-clés match et with permettent de faire des disjonctions de cas plus puissantes
qu’un simple if-else. Voyons quelques exemple :

1 (* Renvoie le nom de x si c'est un chiffre *)

2 let nom x = match x with

3 | 0 -> "Zero"

4 | 1 -> "Un"

5 ...

6 | 9 -> "Neuf"

7
8 (* renvoie true si x vaut 0, false sinon *)

9 let is_zero x = match x with

10 | 0 -> true (* si x vaut 0, alors true *)

11 | y -> false (* si x vaut n'importe quoi d'autre, alors false *)

12
13
14 (* Première position d'un 0 du triplet t. -1 si t n'a aucun 0 *)

15 let zero_pos t = match t with

16 | (0, y, z) -> 0 (* si la 1ere composante vaut 0 *)

17 | (x, 0, z) -> 1 (* si la 2eme composante vaut 0 *)

18 | (x, y, 0) -> 2 (* si la 3eme composante vaut 0 *)

19 | u -> -1 (* Tous les autres cas *)

20
21 (* Renvoie le produit des composantes de p si aucune n'est nulle, sinon la somme *)

22 let prod_or_sum p = match f 0, f 1 with

23 | (0, y, z) -> y + z

24 | (x, 0, z) -> x + z

25 | (x, y, 0) -> x + y

26 | u -> x * y * z

La syntaxe précise de cette construction est :

1 match E with

2 | M1 -> E1

3 ...

4 | Mn -> En

où E, E1, ... En sont des expressions, et où M1, ..., Mn est un motif.

Définition 8

Un motif est (définition temporaire) :

— Soit une constante

— soit une variable

— soit un tuple de motifs

Toutes les variables d’un motif doivent être distinctes.

Un motif représente un squelette de valeur. Par exemple, x est un motif qui veut dire
“n’importe quelle valeur”, et (x, (y, 0), z, (t, u, 5)) est un motif signifiant “un quadruplet,
dont :

1. le premier membre est n’importe quoi,

2. le deuxième est un couple dont la deuxième composante est nulle

3. le troisième est n’importe quoi

4. le quatrième est un triplet dont la troisième composante est 5

17/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

Ainsi, si l’on compare ce dernier motif avec (3, (2, 0), 3, (7, 8, 0)) , le motif et la valeur
correspondent, et alors x prend la valeur 3, y prend la valeur 2, etc...

Attention, les termes suivants ne sont pas des motifs :

1 | 1+x (* pas d'opérateur autorisé *)

2 |(x, x) (* pas de variable en double *)

Le typage d’un match with est comme suit : E peut être de n’importe quel type, du moment
que le type respecte les motifs M1, ... Mn. Les E1, ..., En doivent être d’un même type T, et
alors l’expression totale est de type T également. Pour chaque couple Mk, Ek, il faut que les
types des variables de Mk soient cohérents dans Ek.

La sémantique de cette construction est comme suit. Pour évaluer l’expression :

1 match E with

2 | M1 -> E1

3 ...

4 | Mn -> En

il faut :

1. Évaluer E en une valeur v

2. Comparer v avec les motifs M1, ..., Mn, dans l’ordre

3. Lorsqu’un motif Mk correspond, on évalue l’expression Ek correspondante, en ayant ajouté
au contexte les variables du motif Mk en les faisant correspondre à v.

Exemple 3

Voyons en détail comme est évaluée l’expression suivante :

1 match (1, (2, 1+2), 3+1) with

2 | (0, _, _) -> 0

3 | (x, (y, 0), z) -> (x - y) * z

4 | (x, (y, _), z) -> (x + y) * z

La variable _ , appelée “underscore”, joue un rôle particulier : elle peut être présente plu-
sieurs fois dans un motif, mais ne figurera pas dans le contexte. On appelle ce motif particulier
un joker, ou wildcard en anglais, il sert donc à ignorer ou à jeter à la poubelle des parties de
la valeur matchée. Par exemple :

1 (* Calcule x*y *)

2 let mult x y = match x, y with

3 | 0, _ -> 0

4 | _, 0 -> 0

5 | _ -> x*y

MP2I Pierre de Fermat 2025-2026 18/36

2. ÉLÉMENTS DE BASE D’OCAML

Variables et motifs Un motif est un squelette, il décrit donc une forme mais ne contient
pas de valeur. Par exemple :

1 let equal x y =

2 match x with

3 | y -> true

4 | _ -> false

La fonction ci-dessus n’est pas correcte. En effet, le y dans le premier motif n’a
aucun lien avec le y en paramètre. On pourrait remplacer le y du motif par n’importe quel
identifiant, et même par un underscore :

1 let equal x y =

2 match x with

3 | _ -> true

4 | _ -> false

Il est alors clair que cette fonction renvoie toujours true !

A retenir : on ne peut pas utiliser une variable préexistante dans un motif pour comparer la
valeur du match à la valeur de cette variable.

Matching incomplet Lorsqu’un match with ne couvre pas tous les cas possibles du type
concerné, on dit qu’il est incomplet, ou non-exhaustif. Par exemple :

1 let f x = match x with

2 | 0 -> 1

3 | 2 -> 3

Si l’on essaie d’évaluer cette expression, OCaml va raler, et dire que le matching n’est pas
exhaustif. Il donnera même un exemple de valeur qui n’est pas matchée ! On doit toujours
couvrir tous les cas dans un match with. Cependant, il se peut qu’un cas ne soit pas sensé
arriver car on l’empêche dans le code. Dans ce cas, on peut utiliser la fonction failwith , qui
affiche un message d’erreur et arrête le programme. Par exemple :

1 let parite x = x mod 2

2 let est_pair y = match parite y with

3 | 0 -> true

4 | 1 -> false

5 | _ -> failwith "Ne doit pas arriver"

Il ne faut jamais laisser un matching incomplet.

On peut aussi utiliser les motifs avec les let-in. On parle alors de let déstructurant. On
peut aussi utiliser le joker dans ce contexte :

1 let p = (2, "bla", true)

2 let a, b, c = p

3
4 let p = "important", "a jeter", "aussi a jeter"

5
6 let x, _, _ = p

19/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

C Fonctions récursives

En OCaml, on n’utilise pas (pour l’instant) de boucle for ou de boucle while. A la place,
on utilise des fonctions récursives, c’est à dire des fonctions qui s’appellent elles-même. La
récursivité est au coeur de la programmation fonctionnelle.
Par exemple, écrivons une fonction qui calcule ab pour a, b ∈ N. Par définition :

∀a ∈ N,∀b ∈ N, ab =
b∏

i=1

a

Cependant, on peut remarquer la chose suivante pour a, b ∈ N :

— Si b = 0, ab = 1

— Sinon, ab = ab−1 × a

Ces relations permettent de caractériser ou même de définir récursivement la quantité
ab. On voudrait donc écrire :

1 let puissance a b =

2 if b = 0 then 1

3 else a * puissance a (b-1)

mais cela n’est pas accepté. En effet, au moment où l’on écrit le corps de la fonction puis-
sance, l’identifiant puissance ne fait pas partie de l’environnement. En OCaml, pour autoriser
une fonction à utiliser son propre nom, i.e. pour préciser que l’on écrit une fonction récursive,
on utilise le mot clé let rec :

1 let rec puissance a b =

2 if b = 0 then 1

3 else a * puissance a (b-1)

Le typage et la sémantique du let rec sont les mêmes que pour le let classique, mais à
l’évaluation, une fonction récursive se trouve dans son propre contexte.

Exercice 4

Créez un fichier “exp.ml”. Vous pourrez l’exécuter dans l’interpréteur en y tapant :

1 #use "exp.ml";;

Q1. Recopiez la fonction puissance. Exécutez le code dans l’interpréteur puis testez
la fonction sur quelques exemples.

Q2. Trouver une formule de récurrence pour la factorielle, et en déduire une fonction
OCaml factorielle: int -> int .

Q3. Trouver une formule de récurrence permettant d’écrire l’exponentiation rapide
sous forme récursive :

— Si b = 0, exp a b = ...

— Sinon :

— Si b est pair, exp a b = ... (faire apparâıtre un terme de la forme exp X Y)

— Sinon, exp a b = ... (faire apparâıtre un terme de la forme exp X Y)

Q4. Implémenter l’exponentiation rapide, ré-exécuter le fichier “exp.ml” puis tester la
fonction.

MP2I Pierre de Fermat 2025-2026 20/36

2. ÉLÉMENTS DE BASE D’OCAML

D Listes

Un nouveau type : les listes. En OCaml, les listes sont définies récursivement, comme suit :

— La liste vide, notée [] , est une liste

— Si E1 est une expression de type 'a et E2 une expression de type 'a list , alors E1::E2

est une liste, contenant E1 suivi des éléments de E2. On dit que E1 est la tête de liste,
et que E2 est la queue de liste.

Attention, la tête d’une liste est un élément, mais la queue d’une liste est une liste. On peut
donc voir les listes OCaml comme des piles : on n’a accès qu’à l’élément au début d’une liste.

Exemple 4

Voyons des exemples de listes :

1 let l_vide = []

2 let l_simple = 3::6::8::[] (* comme 3 :: (6 :: (8 :: [])) *)

3
4 (* Renvoie une liste de taille n contenant

5 exclusivement des 1 *)

6 let rec ones n = match n with

7 | 0 -> []

8 | _ -> 1:: ones (n-1)

9
10 let cinq_uns = ones 5

On remarque qu’OCaml affiche les listes sous la forme [v1; v2; ... ; vn] . On peut également
utiliser cette syntaxe pour définir des listes :

1 let l_a = [1;2;3;4;5;6]

2 let l_b = 1::2::3::4::5::6::[] ;

La première version est du sucre syntaxique, c’est la deuxième forme qui est plus fidèle à la
forme qu’ont les listes.

Une liste doit contenir uniquement des expressions d’un même type T, et dans ce cas, la
liste sera de type T list . Par exemple, ["blabla"; "bli"; "toto"] est de type string list ,

mais [1; 2.1; 0] contient des entiers et des flottants, et n’est donc pas une expression bien
typée.

Les listes forment un type polymorphique. Par exemple, la liste vide est typée 'a list

par OCaml. Cela signifie que c’est une liste de type T list , pour tout type T. Ainsi, lorsque
l’on écrira des fonctions générales sur les listes, on pourra les appliquer sur des listes de n’im-
porte quel type !

Les listes viennent également agrandir la liste des motifs :

— [] est un motif

— si M et L sont des motifs, alors M::L est un motif

Par exemple : x::y::q est un motif signifiant ”deux éléments puis une liste”. Ce mo-
tif sera compatible avec toutes les listes de taille au moins 2, et permettra de récupérer les
deux premiers éléments, et la liste des éléments suivants. (x, y):: q est un motif signi-
fiant ”une liste de couples, d’au moins un élément”. Il permettra de matcher par exemple
[("bla", 5); ("titi", 129)] , et alors x vaudra "bla" et y vaudra 5 .

21/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

Utilisons ces motifs pour créer quelques fonctions :

1 (* Renvoie la somme des éléments de l: int list *)

2 let rec somme_liste l = match l with

3 | [] -> 0

4 | x::q -> x + somme_liste q

5
6 (* Renvoie true si la liste est de taille pair, false sinon *)

7 let rec taille_paire l = match l with

8 | [] -> true

9 | x::[] -> false

10 | x::y::q -> taille_paire q (* enlever deux éléments conserve la parité *)

Tri par sélection Écrivons le tri par sélection en OCaml. On aura besoin d’une fonction de
sélection qui extrait le max d’une liste : codons une fonction selection: 'a list -> ('a * 'a list)

qui étant donné une liste L renvoie le couple (x, L′) avec x le max de L, et L′ la liste L où une
occurence de x a été supprimée.

Pour coder cette fonction, on doit réfléchir inductivement : si j’ai une liste Q et que j’ai
obtenu son max m et la liste Q′ des autres éléments, comment faire pour obtenir le max de
x :: Q ? Il suffit de regarder le maximum entre x et m : c’est le maximum de x :: Q, et l’autre
peut être remis au début de la liste. Cette remarque nous donne une définition inductive de la
fonction :

1 (* Couple (a, t) avec a le maximum de l et t la

2 liste l privée d'une occurence de a *)

3 let rec selection l = match l with

4 | [] -> failwith "empty list"

5 | x::[] -> x, []

6 | x::q -> let (m, q') = selection q in

7 if x > m then (x, m::q')

8 else (m, x::q')

A partir de cette fonction, on peut construire aisément une fonction récursive de tri par
sélection : si la liste n’est pas vide, on extrait son maximum, on trie les éléments restants et on
rajoute l’élément extrait au début.

1 let rec select_sort l = match l with

2 | [] -> []

3 | x::q -> let (m, q) = selection l in m::(select_sort q)

MP2I Pierre de Fermat 2025-2026 22/36

2. ÉLÉMENTS DE BASE D’OCAML

E Alias de type

En OCaml, on peut définir ses propres types. Par exemple, comme en C, on peut redéfinir
un type pré-existant en lui donnant un autre nom :

1 type nombre = int

2 type vecteur3d = float * float * float

3
4 (* fonctions |N -> |B *)

5 type filtre_entier = int -> bool

Bien qu’OCaml devine tout seul le type des expressions que l’on écrit, il ne devine pas
toujours par lui même les types définis ainsi :

1 let x = (0., 0., 0.) (* affiche float*float*float *)

2 let y = 5 (* affiche nombre plutôt que int *)

Cependant, on peut spécifier le type des variables avec “ :” comme suit :

1 let x: int = 5

2
3 let f (x:int) : int = x + 1 (* prend en entrée un int et renvoie un int *)

4
5 let f: (int -> int) = fun x -> x - 1

6
7 let p: vecteur3d = (2., 3.2, -8.54)

8
9 let equal_5: filtre_entier = fun x -> x = 5

10
11 let produit_scalaire (a:vecteur3d) (b:vecteur3d) : float =

12 let xa, ya, za = a in

13 let xb, yb, zb = b in

14 xa *. xb +. ya *. yb +. za *. zb

15
16
17 (* Ici, le type vecteur3d serait inféré automatiquement àcause du type

18 de produit_scalaire *)

19 let norme_carree (a:vecteur3d) : float = produit_scalaire a a

F Type somme

Le type produit correspond au produit cartésien d’ensemble. Le type somme correspond
plutôt à l’union disjointe.

Un type somme permet de représenter des catégories d’objets ayant plusieurs “cas”. Un
tel type est constitué de constructeurs, qui sont les différents mots clés que l’on utilise pour
construire des objets de ce type. Chaque constructeur correspond à un “cas” différent.

Exemple 5

On veut implémenter un type pour les fournitures scolaires. On veut pouvoir représenter :

— Les stylos BIC, qui peuvent être de couleurs différentes

— Les règles, qui peuvent être de tailles différentes et peuvent être centrées ou pas (i.e.
0 est au centre ou au bord)

— Les gommes

23/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

Créez un fichier “fourniture.ml”. Vous pourrez l’exécuter dans l’interpréteur en tapant :

1 #use "fourniture.ml";;

On définit le type somme avec :

1 type fourniture =

2 | Stylo of string (* couleur *)

3 | Regle of int * bool (* taille en cm, centrée ou non *)

4 | Gomme

Ce qui se lit : “Il y a trois types de fournitures : Les stylos, qui sont paramétrés par une
châıne de caractères, les règles, paramétrées par un entier et un booléen, et les gommes”.
Les commentaires précisent à quoi servent les paramètres.

On peut ensuite créer des éléments de ce type :

1 let x = Stylo "rouge"

2 let r1 = Regle (30, true)

3 let r2 = Regle (20, false)

4 let g = Gomme

Notons qu’OCaml peut automatiquement tester l’égalité entre deux objets d’un même
type :

1 let x = Stylo "rouge"

2 let y = Stylo "rouge";;

3 x = y;; (* Vaut true *)

La manière principale de manipuler les types définis ainsi est le match with. Par
exemple, on suppose que le prix des fournitures est comme suit :

— Les gommes coûtent 1,50¿ ;

— Les stylos bleus coûtent 1,20¿, les autres coûtent 1¿ ;

— Une règle de l centimètres coûte 1 + l
15

euros.

Voici comment on implémenterait une fonction calculant le prix d’une fourniture en
OCaml :

1 (* prix de fourn en euros *)

2 let prix (fourn: fourniture) : float =

3 match fourn with

4 | Gomme -> 1.5

5 | Stylo "bleu" -> 1.2

6 | Stylo _ -> 1.0

7 | Regle(longueur, _) -> 1.0 +. float_of_int longueur /. 15.0

On peut représenter une trousse comme une liste de fournitures. Écrivons une fonction
qui calcule le nombre de gommes dans une trousse :

1 type trousse = fourniture list;;

2
3 let rec nombre_gommes (t:trousse) : int =

4 match t with

5 | [] -> 0

6 | Gomme::q -> 1 + nombre_gommes q

7 | _::q -> nombre_gommes q

MP2I Pierre de Fermat 2025-2026 24/36

2. ÉLÉMENTS DE BASE D’OCAML

Exercice 5

On suppose qu’une trousse seule coûte 5¿. Écrire une fonction calculant le prix total d’une
trousse, en comptant tout ce qu’elle contient :

1 let rec prix_trousse (t: trousse) : float = ...

La syntaxe pour les type somme est donc ;

1 type nom_type =

2 Constructeur1 of type1 (* ou Constructeur1 *)

3 | Constructeur2 of type2 (* ou Constructeur2 *)

4 ...

5 | ConstructeurN of typeN (* ou ConstructeurN *)

On rajoute également à la définition des motifs :

— Si Cons est un constructeur d’un type somme, et M est un motif, alors Cons M est un
motif.

Rien n’empêche un type de s’auto-référencer, on dit alors que c’est un type inductif, ou
récursif. Par exemple, si l’on veut créer un type représentant les expressions arithmétiques :

1 type expr =

2 | Constante of int

3 | Plus of expr * expr

4 | Fois of expr * expr

Autrement dit : une expression est soit une constante entière, soit la somme de deux ex-
pressions soit le produit de deux expressions. L’expression (1 + 2) s’écrira :

1 Plus (1, 2)

L’expression (1 + 2) ∗ (3 + 7 ∗ 6) s’écrira :

1 let my_expr =

2 Fois (

3 Plus(

4 Constante 1,

5 Constante 2

6),

7 Plus(

8 Constante 3,

9 Fois (

10 Constante 7,

11 Constante 6

12)

13)

14)

25/36 MP2I Pierre de Fermat 2025-2026

2. ÉLÉMENTS DE BASE D’OCAML

Pour manipuler des types inductifs, il faudra généralement utiliser des fonctions récursives.
Sur l’exemple précédent, écrivons une fonction qui évalue une expression arithmétique :

1 let rec eval e = match e with

2 | Constante n -> n

3 | Plus (e1, e2) -> eval e1 + eval e2

4 | Fois (e1, e2) -> eval e1 * eval e2

(Remarquez que cette fonction ressemble de près à l’algorithme d’évaluation des expressions
OCaml décrit plus tôt dans le chapitre. En fait, à ce stade, vous pourriez créer un type pour
les expressions OCaml, un type pour les environnement, et recoder OCaml en OCaml !)

Tentons de recoder le type des listes OCaml. On remarque que les listes sont polymorphes,
autrement dit elles peuvent s’adapter à des types différents. On voudrait écrire :

1 type liste =

2 | Vide (* liste vide *)

3 | Cons of 'a * liste (* Constructeur: Cons (x, q) sera x suivi de q *);;

Cependant, OCaml affiche : Error: The type variable ’a is unbound in this type

declaration.

Pour définir ce type, on doit le paramétrer :

1 type 'a liste =

2 | Vide

3 | Cons of 'a * ('a liste) ;;

La syntaxe générale des types paramétrés est :

1 type ('a1, 'a2, ..., 'an) nom_type =

2 | Constructeur1 of type1

3 ...

4 | Constructeurk of typek

5 ;;

On peut ensuite manipuler ce type normalement, et OCaml gèrera le polymorphisme :

1 let ma_liste_1 = Cons (5, Cons(6, Vide)) ;; (* [5, 6] *)

2 let ma_liste_2 = Cons ("bla", Cons("blo", Cons ("bli", Vide))) ;; (* ["bla", "blo", "bli

"] *)

3
4 let tete l = match l with

5 | Vide -> failwith "liste vide"

6 | Cons (x, q) -> x

7 ;;

Exercice 6

Écrire une fonction vraie_liste: 'a liste -> 'a list qui transforme une liste de notre
type liste maison en une liste standard OCaml :

MP2I Pierre de Fermat 2025-2026 26/36

3. RÉCURSIVITÉ

3 Récursivité

A Correction d’une fonction récursive

Lorsque l’on écrit du code OCaml, on n’utilise pas de boucles. Donc, il nous faut un nouvel
outil pour prouver la correction des fonctions. Considérons un exemple simple : la multiplica-
tion :

1 (* Renvoie x fois y, pour x, y entiers positifs *)

2 let rec mult (x: int) (y: int) : int =

3 if x = 0 then 0

4 else y + mult (x-1) y

Cette fonction est correcte si elle renvoie bien ce qui est indiqué dans sa documentation,
donc ici si elle renvoie bien le produit de ses deux arguments. Remarquons que le commentaire
de la fonction précise une précondition nécessaire à la correction : x et y doivent être positifs.

Pour étudier cette expression, on introduit la fonction mathématique correspondante :

N2 −→ N

mult : x, n 7→

{
0 si n = 0

x+mult(x, n− 1) sinon

Cette fonction est définie par récurrence. Commençons par montrer qu’elle est bien
définie, c’est à dire que la fonction OCaml correspondante termine. Pour cela, il faut remarquer
qu’un appel à la fonction mult cause un appel récursif, sur une entrée strictement plus petite.
Comme les entrées sont dans N (par précondition), et comme il n’existe pas de suite infinie
strictement décroissante dans N , la fonction s’arrête bien.

Montrer la correction de la fonction, c’est montrer la propriété suivante :

∀x ∈ N, ∀n ∈ N,mult(x, n) = x× n

Pour cela, on procède par récurrence. Plus précisément, posons x ∈ N, et montrons par
récurrence sur N la propriété suivante :

∀n ∈ N, P (n) : mult(x, n) = x× n

— Pour n = 0, mult(x, 0) = 0 : P (0) est vraie.

— Soit n ∈ N∗, supposons P (n− 1). Alors, mult(x, n− 1) vaut x× (n− 1). Or, n > 0 donc
mult(x, n) = x +mult(x, n − 1) = x + x × (n − 1) par hypothèse de récurrence. Donc,
mult(x, n) = x× n : P (n) est vraie

27/36 MP2I Pierre de Fermat 2025-2026

3. RÉCURSIVITÉ

Voyons un exemple plus complexe, en étudiant le tri par insertion :

1 (* insert x l est une copie de l où x a été inséré dans l'ordre.

2 l doit être triée *)

3 let rec insert (x: 'a list) (l: 'a list) : 'a list = match l with

4 | [] -> [x]

5 | y::q -> if x < y then x :: l

6 else y :: insert x q ;;

7
8 (* insert_sort l est une copie triée de l *)

9 let rec insert_sort (l: 'a list) : 'a list = match l with

10 | [] - []

11 | x::q -> let q = insert_sort q in insert x q ;;

On considère les fonctions mathématiques correspondantes. On ne décrit pas pour l’instant
l’ensemble mathématique précis où vivent les listes, on y viendra au chapitre suivant.

insert : x, L 7→


[x] si L est vide

x :: y :: Q si L de la forme y :: Q et x < y

y :: (insert(x,Q) si L de la forme y :: Q et x ≥ y

tri insert : L 7→

{
[] si L est vide

(insert(x, tri insert(Q)) si L de la forme x :: Q

Ces fonctions sont définies par récurrence sur la taille de L. Au prochain chapitre, on dira
qu’elles sont définies par induction sur la structure des listes.

Commençons par la terminaison d’insert. On pose f : L 7→ |L|. Soit L une liste, no-
tons L0, . . . , Lk, . . . les listes sur lesquelles on appelle récursivement la fonction insert lors de
l’évaluation de insert(x, L). On remarque que la suite (f(Lk)) est strictement décroissante et
à valeurs dans N. C’est donc une suite finie : la fonction insert termine.

La terminaison de la fonction de tri se prouve de manière analogue. Montrons mainte-
nant formellement la correction des deux fonctions. Au chapitre suivant, nous verrons une
généralisation du principe de récurrence qui permettra d’écrire de manière beaucoup plus
élégante et courte les preuves de ce style.

— Pour insert : On raisonne par récurrence sur la taille de la liste L en entrée. On pose x
un élément à insérer. Montrons la propriété suivante par récurrence sur n ∈ N :

∀n ∈ N, P (n) : “∀L liste de taille n, si L est triée, alors insert(x, L) est contient les
éléments de L ainsi que x, et est triée.”

• Si |L| = 0 alors L = [], et [x] contient bien les éléments de L (personne) ainsi que x,
et est triée.

• Soit L une liste avec |L| > 0. On écrit L = y :: Q. Si x < y alors x :: y :: Q = x :: L
est bien une copie de L où x a été ajouté, triée. Sinon, par hypothèse de récurrence,
insert(x,Q) est une copie triée de Q où x a été ajouté, et comme L est triée,
y ≤ minQ et y ≤ x. Donc, y :: insert(x,Q) est triée, et contient bien x ainsi que les
éléments de L, à savoir y et les éléments de Q

— Pour insert sort : Exercice : Montrer par récurrence la propriété suivante :

∀n ∈ N, P (n) : “∀L liste de taille n, insert sort(L) est triée et contient les éléments de
L.”

MP2I Pierre de Fermat 2025-2026 28/36

3. RÉCURSIVITÉ

B Récursivité terminale

On rappelle que les appels de fonctions nécessitent de réserver de la mémoire pour s’exécuter :
cette mémoire est réservée dans la pile d’appel (voir chapitre 3), et les appels récursifs viennent
s’ajouter les uns sur les autres. Dans un langage comme OCaml, où les appels récursifs sont
un outil central de programmation, il faut faire attention à ne pas remplir la pile. En théorie,
il faudrait donc éviter de faire des appels récursifs trop profonds (par exemple avoir un million
de stack frames empilées les unes sur les autres). En pratique, certaines fonctions récursives
peuvent être transformées en boucle par le compilateur, on peut donc les exécuter sans se sou-
cier de problèmes de dépassement de pile. Voyons un exemple : considérons les deux fonctions
suivantes, qui permettent de calculer la factorielle.

1 (* factorielle n = n! *)

2 let rec factorielle n =

3 if n = 0 then 1

4 else n * factorielle (n-1)

5
6 (* factorielle_bis n accu = n!× accu *)

7 let rec factorielle_bis n accu =

8 if n = 0 then accu

9 else factorielle_bis (n-1) (accu*n)

10
11 (* On remarque que factorielle_bis n 1 = factorielle n *)

Pour évaluer factorielle 2 , on doit :

1. Calculer factorielle 2 :

(a) Caluler factorielle 1

i. Caluler factorielle 0

ii. On renvoie donc 1

(b) On obtient 1, on multiplie par 1, on renvoie donc 1

2. On obtient 1, on multiplie par 2, on renvoie donc 2

Ainsi, on doit plonger au fond des appels récursifs, puis remonter à la surface en appliquant
les opérations nécessaires. On doit donc empiler les appels de fonction les un sur les autres,
puis les dépiler. Donc, si l’on tente d’évaluer factorielle 10000000 , on aura une erreur de
dépassement de pile.

En revanche, pour évaluer factorielle_bis 2 1 :

1. Calculer factorielle bis 2 1

(a) Calculer factorielle bis 1 2

i. Calculer factorielle bis 2 0

ii. On renvoie donc 2

On renvoie donc 2

On renvoie donc 2

Ici, la phase de “remontée à la surface” est triviale : elle sert juste à transmettre le résultat
vers l’appel initial. Autrement dit, on n’a pas besoin de sauvegarder les différentes stack frames
dans la pile, car on n’utilise plus leurs données une fois qu’on est entré dans un appel plus
profond. Les différentes stack frames peuvent donc se remplacer les unes les autres, au lieu de
s’empiler. Les compilateurs d’OCaml peuvent détecter les fonctions ayant cette propriété, et les
transformer en boucles dans le code machine généré. Si l’on évalue factorielle_bis 10000000 1 ,
aucun problème de pile !

29/36 MP2I Pierre de Fermat 2025-2026

3. RÉCURSIVITÉ

Définition 9

On appelle fonction récursive terminale (en anglais : tail-recursive) toute fonction
récursive ne nécessitant aucun traitement à la remontée d’une valeur.

Proposition 1

Les fonctions récursives terminales peuvent être compilées / interprétées de façon à garder
une taille de pile d’appel constante.

Remarquons que pour factorielle_bis , on n’écrit pas directement la fonction factorielle,
mais une fonction plus générale, que l’on applique avec un bon paramètre ensuite. La pro-
grammation récursive terminale nécessite souvent d’utiliser une méthode par accumulateur
qui consiste à stocker le résultat temporaire dans un ou plusieurs des paramètres, appelés les
accumulateurs.

Exemple 6

Prenons la fonction d’exponentiation rapide et tentons d’en trouver une version récursive
terminale.

1 let rec fast_exp a b =

2 match (b, b mod 2) with

3 | (0, _) -> 1

4 | (_, 0) -> fast_exp (a*a) (b/2)

5 | _ -> a * fast_exp (a*a) (b/2) (* Pas récursif terminal ! *)

On rappelle la version impérative de l’exponentiation rapide :

1 int fast_exp(int a, int b){

2 int r = 1, A = a, B = b;

3 while (B>0){ // invariant: r ×AB = ab

4 if (B%2 == 1){

5 r = A*r;

6 }

7 a = A*A;

8 b = B/2;

9 }

10 return r;

11 }

Nous allons utiliser l’invariant pour déterminer une fonction récursive terminale. Pour
A,B, r ∈ N, notons f(A,B, r) = r × AB. L’invariant de boucle peut se réécrire : f(A,B, r) =
f(a, b, 1) = ab. Autrement dit, la quantité f(A,B, r) reste constante au long de l’exécution,
et sa valeur est ab. Il nous suffit donc de déterminer une formule de récurrence permettant de
calculer f , ce que l’on obtient en traduisant le code de la boucle while :

f(A, 0, r) = r (sortie de boucle)
f(A,B, r) = f(A2, B

2
, r) si B pair

f(A,B, r) = f(A2, B−1
2

, Ar) si B impair

Ces formules nous donnent immédiatement une version récursive terminale :

1 (* exp_mult a b r = r × ab *)

2 let rec exp_mult a b r =

3 match (b, b mod 2) with

4 | (0, _) -> r

MP2I Pierre de Fermat 2025-2026 30/36

3. RÉCURSIVITÉ

5 | (_, 0) -> exp_mult (a*a) (b/2) r

6 | _ -> exp_mult (a*a) (b/2) (a*r)

7
8 (* exp a b = ab *)

9 let exp a b =

10 exp_mult a b 1

La variable r du code OCaml va jouer le rôle de r dans le code C et grossir en stockant de
plus en plus d’information, pour être renvoyée à la fin. On appelle un tel paramètre de fonction
un accumulateur.
Dans l’exemple précédent, nous sommes repartis d’une boucle pour trouver une version récursive
terminale, mais il est plus simple de réfléchir directement à comment introduire un accumula-
teur : que stocker dedans, et comment l’initialiser.

Règles de bonne conduite Lorsque l’on programme en OCaml, on essaie d’écrire des fonc-
tions récursives terminales dès que c’est possible, car elles sont plus efficaces d’un point de
vue mémoire. On passe alors quasi-systématiquement par des fonctions auxiliaires utilisant un
accumulateur, et il y a alors deux possibilités :

— On définit la fonction auxiliaire avant la fonction principale :

1 let rec fonction_auxiliaire x_1 ... x_n accu_1 ... accu_m =

2 ...

3 let fonction_principale x_1 ... x_n =

4 fonction_auxiliaire x_1 ... x_n v_1 ... v_m

L’avantage principal est que l’on peut utiliser la fonction auxiliaire dans le reste du code
(en particulier pour tester / débugger).

— On définit la fonction auxiliaire dans la fonction principale :

1 let fonction_principale x_1 ... x_n =

2 let rec fonction_auxiliaire x_1 ... x_n accu_1 ... accu_m =

3 ...

4 in

5 fonction_auxiliaire x_1 ... x_n v_1 ... v_m

L’avantage principal est que l’on n’a pas besoin de re-préciser en paramètre de la fonction
auxiliaire les paramètres de la fonction principale qui restent constant entre les appels.
Par exemple :

1 (* somme f n =
∑n−1

i=0 f(i) *)

2 let somme (f: int->int) (n: int) : int =

3 (* somme_plus (k: int) (r: int) = r +
∑k−1

i=0 f(i) *)

4 let rec somme_plus k r =

5 if k < 0 then r else

6 somme_plus (k-1) (r + f (k-1))

7 in

8 somme_plus n 0

La fonction f étant toujours la même, pas besoin de la passer en paramètre de la fonction
auxiliaire, ce qui rend le code plus léger.

Dans les deux cas, il est important de respecter certaines règles.

— Ne jamais appeler la fonction auxiliaire avec le même nom que la fonction principale suivi
de “ aux”. Si vous cherchez des exos / cours en ligne, vous verrez souvent cette pratique,
mais c’est peu recommandable.

31/36 MP2I Pierre de Fermat 2025-2026

3. RÉCURSIVITÉ

— Autant que possible, trouver un commentaire de documentation adapté pour la fonction
auxiliaire, et pas juste (* c'est la fonction auxiliaire *) . Ceci nécessite de réfléchir au
rôle précis de l’accumulateur, et donc de donner une spécification mathématique de la
fonction auxiliaire.

— Éviter de donner le même nom aux paramètres de la fonction auxiliaire et à ceux de la
fonction principale si l’on code en “imbriqué”.

Les deux premières règles sont liées, et sont là pour vous forcer à réfléchir au sens de
vos fonctions auxiliaires au delà de “j’utilise un accumulateur”. Par exemple pour la fonction
somme_plus de l’exemple précédent, la spécification est claire : la fonction renvoie la somme
des k premières valeurs de f , plus x. Il n’est pas toujours évident de trouver un nom adapté,
mais en général, réfléchir au nom revient à réfléchir au sens, et donc à la manière d’écrire la
fonction. Ces pratiques vous aideront donc sur le long terme à coder efficacement.

Exercice 7

Écrivons quelques fonctions récursives sur les listes, en cherchant systématiquement une
version récursive terminale.

Q1. Définir une fonction longueur permettant de calculer
la longueur d’une liste.

Q2. Définir une fonction reverse permettant de renverser une liste.

Q3. La fonction map: ('a -> 'b)-> 'a list -> 'b list qui applique une fonction à
tous les éléments d’une liste.

Q4. Une fonction fibonacci: int -> int calculant les termes de la suite de Fibonacci.

Exercice 8

On considère le type suivant représentant des expressions arithmétiques :

1 type expr =

2 | Int of int

3 | Plus of expr * expr ;;

Q15. Définir une fonction eval: expr -> int qui évalue une expression. Essayer de la
rendre récursive terminale. Que remarque-t’on ?

C Arbre d’appel

En OCaml, on peut tracer une fonction pour observer ses valeurs d’entrée et de sortie au
cours des appels récursifs générés par une exécution. Par exemple :

1 let rec fact n =

2 if n <= 1 then 1

3 else n * fact (n-1

)

4 ;;

5 #trace fact ;;

6 fact 3;;

fact <-- 3

fact <-- 2

fact <-- 1

fact --> 1

fact --> 2

fact --> 6

f <-- x signifie que l’on appelle f sur x, et f --> x signifie qu’un appel s’est terminé et a
renvoyé x.

MP2I Pierre de Fermat 2025-2026 32/36

3. RÉCURSIVITÉ

Un arbre d’appel permet de représenter schématiquement une telle exécution. On suit
la trace de la fonction, en descendant dans l’arbre lors d’un nouvel appel, et en remontant
lorsqu’un appel termine. Par exemple, l’arbre d’appel de fact 4 est :

Vocabulaire : Les cercles représentant des appels sont nommés noeuds de l’arbre. Le
premier noeud, correspondant à l’appel initial, est appelé racine.

L’arbre d’appel permet d’estimer la complexité d’une fonction : Si chaque appel demande
un nombre constant d’opérations hors appels récursifs, la fonction aura une complexité propor-
tionnelle au nombre de noeuds de l’arbre d’appel.

Dans l’exemple précédent, l’arbre d’appel de fact n a n noeuds pour n ∈ N∗, et chaque
appel demande un temps constant excepté l’appel récursif : la complexité est en O(n).

Exercice 9

On considère la suite suivante :

u0 = 2
∀n ∈ N, un+1 = |1− 3un + 2u2

n|
On propose la fonction suivante permettant de calculer la suite u :

1 let rec u n =

2 match n with

3 | 0 -> 2

4 | _ -> if 1 - 3 * u (n-1) + 2 * u (n-1) * u (n-1) > 0 then

5 1 - 3 * u (n-1) + 2 * u (n-1) * u (n-1)

6 else

7 -(1 - 3 * u (n-1) + 2 * u (n-1) * u (n-1))

Dessiner les quelques premiers étages de l’arbre d’appel de u 5 . Estimer le nombre
de noeuds dans l’arbre d’appel de u n pour n ∈ N, et en déduire la complexité de cette
fonction. Proposer une fonction plus rapide.

D Complexité

L’exemple précédent montre qu’il est possible de déterminer la complexité d’une fonction
récursive en étudiant son arbre d’appel. Une autre méthode très générale est de trouver une
relation de récurrence vérifiée par la complexité, et de la résoudre.

Exemple 7

Pour la fonction fact , notons Cn le coût de l’appel fact n . Pour n > 1 on a Cn =
Cn−1 + O(1). Donc, à partir d’un certain rang n0, pour une certaine constante A > 0,
Cn ≤ Cn−1 + A. On a donc :

33/36 MP2I Pierre de Fermat 2025-2026

3. RÉCURSIVITÉ

Cn ≤ Cn−1 + A
≤ Cn−1 + Cn−2 + 2A
≤ Cn0 + (n− n0)A
≤ Cn0 + An

La fonction est donc en O(n) : même coût que l’algorithme avec une boucle.

Exercice 10

De même, trouver une relation de récurrence pour la fonction u de l’exemple précédent,
et retrouver la complexité asymptotique.

On considère l’exponentiation rapide, que l’on peut écrire en OCaml comme suit :

1 (* calcule a puissance n *)

2 let rec fast_exp (a : int) (n : int) : int = match n with

3 | 0 -> 1

4 | _ -> if n mod 2 = 0 then fast_exp (a*a) (n/2)

5 else a * fast_exp (a*a) (n/2)

On peut étudier la complexité Cn de cette fonction grâce à l’équation qu’elle vérifie :

Cn = C⌊n
2
⌋ +O(1)

Étudions pour simplifier la relation suivante :

C0 = 1
Cn = C⌊n

2
⌋ + 1

qui ne changera pas le comportement asymptotique. En raisonnant en base 2, on remarque
que l’opération n 7→ ⌊n

2
⌋ consiste à enlever un bit à n. Ainsi, on peut appliquer la relation de

récurrence au plus ⌈log2 n⌉ fois : une fois par bit dans n. On obtient alors que Cn = 1+1+· · ·+1
avec ⌈log2 n⌉ 1s, i.e. Cn = ⌈log2 n⌉.
Ainsi, Cn = Θ(log n) : on retrouve la complexité logarithmique de l’exponentiation rapide
impérative.

Exercice 11

On propose le code suivant OCaml pour le tri fusion :

1 (* renvoie deux listes l1 l2 de même taille à1 près,

2 contenant les éléments de l *)

3 let rec separer (l: 'a list) : 'a list * 'a list =

4 match l with

5 | [] -> [], []

6 | [x] -> [x], []

7 | x::y::q -> let l1, l2 = separer q in x::l1, y::l2

8
9 (* Fusionne l1 et l2 deux listes supposées triées par ordre croissant *)

10 let rec fusion (l1: 'a list) (l2: 'a list) : 'a list =

11 match l1, l2 with

12 | [], _ -> l2

13 | _, [] -> l1

14 | x1::q1, x2::q2 -> if x1 < x2 then x1 :: fusion q1 l2

15 else x2 :: fusion l1 q2

16
17 let rec tri_fusion (l : 'a list) : 'a list =

MP2I Pierre de Fermat 2025-2026 34/36

3. RÉCURSIVITÉ

18 match l with

19 | [] | [x] -> l

20 | _ -> let l1, l2 = separer l in fusion (tri_fusion l1) (tri_fusion l2)

Q1. Montrer la correction des trois fonctions

Q2. Donner la complexité des fonctions separer et fusion en fonction de la taille de
leurs arguments.

Q3. En notant Cn le nombre d’opérations de tri_fusion sur une liste de taille n,
justifier que Cn vérifie la relation de récurrence suivante :

Cn = C⌊n
2
⌋ + C⌈n

2
⌉ +Θ(n)

Q4. Étudier la relation suivante simplifiée :

Cn = 2Cn
2
+ n

en calculant d’abord C2p pour p entier. On admettra que (Cn)n∈N est croissante. En
conclure la complexité du tri fusion.

Q5. Retrouver cette complexité en étudiant l’arbre d’appel de tri_fusion .

35/36 MP2I Pierre de Fermat 2025-2026

	Premiers programmes
	Éléments de base d'OCaml
	Récursivité

