Premiers programmes en OCaml

Guillaume Rousseau
MP2I Lycée Pierre de Fermat
guillaume.rousseau@ens-lyon.fr

14 janvier 2026

Introduction

OCaml est un langage de programmation développé dans les années 1980-1990, en France,
par des chercheurs et chercheuses de l’INRIAE]. C’est un langage fonctionnel, présentant des
liens forts avec la logique et la théorie de la déduction, ce qui en fait un langage couramment
utilisé dans ces domaines de recherche. Il a par exemple été utilisé pour écrire le logiciel Rocq,
un assistant de preuve permettant de fournir des démonstrations formelles de théoremes, et de
montrer la correction de programmes. Rocq et OCaml ont été utilisés pour écrire et prouver
le compilateur C CompCert : ce compilateur génere des programmes a peine plus lents que
GCC, mais est garanti sans bugf]

Le langage donne beaucoup de garanties de stureté, notamment comparé au C, mais reste
relativement performant, il est donc parfois utilisé en industrie pour les systemes critiques
(aéronautique, nucléaire, ...). Facebook utilise également OCaml en interne, et a méme développé
son propre langage, Reason, mélangeant les notions clés d’OCaml avec des éléments de syntaxe
de javascript.

Langage impératif, langage fonctionnel Le C est un langage impératif. Cela signifie
qu'un programme C est constitué d’instructions, qui disent a la machine ce qu’elle doit faire.
En programmation impérative, on parle d’'état du programme (la mémoire, les variables), et
les instructions servent a modifier I’état du programme.

OCaml est un langage fonctionnel. La programmation fonctionnelle est un autre para-
digme de programmation, dans laquelle un programme est une immense expressiton mathématique
que 'on évalue. Dans une telle expression, on peut faire intervenir des fonctions, qui sont des
valeurs au méme titre que les entiers, les flottants ou les chaines de caracteres.

Dans un langage fonctionnel, il n’y a donc ni variable, ni boucle. Notons qu’OCaml est un
langage fonctionnel dit impur, car il permet tout de méme d’utiliser des éléments de program-
mation impérative, mais certains langages, comme le Haskell, sont purement fonctionnels!

1. Institut national de recherche en informatique et en automatique
2. Si ’'on suppose que Rocq est lui-méme correct !

MP2I Pierre de Fermat 2025-2026 2

1. PREMIERS PROGRAMMES

1 Premiers programmes
Un programme OCaml peut étre compilé comme du C, ou interprété comme du Python.

ocamlc est le compilateur usuel utilisé pour OCaml. Les fichiers OCaml auront pour ex-
tension “.ml”. Pour compiler un programme “mon_programme.ml”, on tape :

ocamlc mon_programme.ml -o nom_executable

Comme avec gce, si I'on ne précise pas de nom d’exécutable, celui-ci s’appellera a.out.

Pour lancer l'interpréteur OCaml, on peut utiliser la commande ocaml, mais on préferera
utiliser utop qui est un interpréteur plus pratique, avec un historique, de I'auto-complétion,
etc... Pour indiquer la fin d’une expression dans I'interpréteur, on utilise [557].

Remarque 1

Dans utop, & tout moment, on peut taper CTRL+C pour arréter la ligne actuelle (en cas
de boucle infinie par exemple). On peut aussi taper CTRL+D pour quitter utop.

Q1. Lancer utop

Q2. Taper les expressions suivantes (sans oublier ;; a chaque fois) :

—

—

-

—

—
-

On remarque que lorsqu’on tape une valeur, OCaml détecte tout seul le type, et nous

affiche. En Ocaml, les types de base sont |int], [float], [bool] [char], [string| et [unit]:
Comparons avec le C :

— n’est pas compatible avec les entiers, c’est un type a part

— est un type totalement distinct de [char].
— est 'équivalent du type [void] Il possede un unique élément, noté (et aussi

prononcé “unit”).

A Opérateurs

Comme tous les langages de programmation, OCaml possede des opérateurs sur les types
de base : additions, soustractions, tests d’égalité, d’inégalité, opérations booléennes, etc...

Q3. Taper les expressions suivantes :

NED
— -3
— [ew <13
— [0t srwe]

Agf’true && false‘

Agf‘true | false‘

3 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

— "'bonjour "~ "tout le monde"

Q4. Taper les expressions suivantes :

[9]
~ [5.65 + 23]

Que constate-t’on?

En OCaml, le typage est strict. En particulier, les et les ne peuvent pas étre
mélangés. Pour additionner des flottants, on doit utiliser 'opérateur et idem pour la mul-
tiplication, la division, la soustraction.

Q5. Taper les expressions suivantes :

20+ 08
[/ 2]

B Arbre de syntaxe

Un programme OCaml est une expression mathématique, que 1'on peut représenter sous
une forme graphique appelée “arbre de syntaxe”. Voici quelques exemples d’expressions et
leurs arbres de syntaxe :

On peut donc définir formellement une expression OCaml comme suit :

Définition 1
Une expression OCaml est :
— Une constante d'un type de base (1, 2, false, true, 3.48, 0.23, ...)

— Un opérateur binaire appliqué sur deux expressions OCaml de types compatibles
(1 +2][-3)+ 4| | (1 = 2 Ifalse], ...)

— Un opérateur unaire appliqué sur une expression OCaml de type compatible ([-12],
[-(2.32 +. 0.5) |, [not (2 < B))

Cette définition est partielle, on viendra la compléter au fur et a mesure que 1’on ren-
contre de nouveaux éléments de syntaxe d’OCaml.

Une premiere remarque : cette définition est “récursive” car on définit ce qu’est une expres-
sion en fonction des expressions. La terminologie exact est que c’est une définition inductive
(Cf prochain chapitre).

MP2I Pierre de Fermat 2025-2026 4

1. PREMIERS PROGRAMMES

Notons aussi qu’avec cette définition, il est ambigu de savoir si veut dire | (1+2)+3
ou bien [1+(2+3) | : il y a deux arbres de syntaxe possibles. Par associativité de l’addition, on

peut choisir arbitrairement I'un ou I'autre. Si I'on considere 'expression [1 + 2 * 3] il n’y a pas
ambiguité grace a la précédence des opérateurs : la multiplication est prioritaire sur I'addition,

I’expression doit donc étre comprise comme |1 + (2 * 3) |.

C Fonctions

Revenons au mélange d’entiers et de flottants. Pour passer de I'un a 'autre, il faut utiliser
des fonctions : |float_of_int| et [int_of_float| En OCaml, L’application de fonction se
fait en écrivant la fonction puis ’argument, séparés d’un espace, sans besoin de
parentheses.

Q6. Taper :

— ‘ float_of_int 3 ‘

— |int_of_float 6.3]
— [float_of_int 3 +. 6.21]

On remarque que la derniere expression est comprise comme \ (float_of_int 3)+. 6.21 \ et pas

\float_cf_int (3 +. 6.21) \ On dit que I'application de fonction est prioritaire sur I'addition.
L’application de fonction est en réalité prioritaire sur (presque) tout.

En OCaml, les parentheses ne servent pas a faire des appels de fonction! Les
parentheses servent uniquement a regrouper une expression pour la rendre “d’un seul te-
nant”. Il est donc inutile d’écrire \ float_of_int(5) \ car 5 est déja d’'un seul tenant, on peut donc
écrire [float_of_int 5|sans parentheses. En revanche, lorsque l'on écrit \float_of_int (5 + 2) \,
les parentheses sont nécessaires.

Définition 2
On dit qu’une expression est atomique si c’est :

— une constante (1, 2, 3.24, true, ...)
— un identifiant ([x], [v])
— une expression entre parentheses (

OCaml étant un langage fonctionnel, les fonctions sont des valeurs comme les autres :

Q7. Taper les expressions suivantes :

— [t Aoy
— [Floav_ot_im

Pour la derniere expression, l'interpréteur affiche :
- : int -> float = <fun>

Dans un type, la fleche se lit ”fleche” ou ”donne”. Une fonction de type prend
en entrée un élément de type A et calcule un élément de type B. Par exemple,
prend un int et donne un float.

On peut donc étendre notre définition des expressions OCaml :

5 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

Définition 3
Sont également des expressions OCaml :

— Une expression OCaml entre parentheses

— Deux expressions OCaml atomiques mises 'une apres 'autre.

Le dernier cas correspond a une application de fonction.

Dans les arbres de syntaxe, on pourra par exemple représenter les applications de fonction
par le mot App. On pourra traiter une application comme une sorte d’opérateur binaire.

MP2I Pierre de Fermat 2025-2026 6

1. PREMIERS PROGRAMMES

Exemple 1

Voici 'arbre de syntaxe de I'expression |float_of_int (3 + int_of_float (2.5 *. 2.1))

En OCaml, on peut créer ses propres fonctions. Par exemple, la fonction f: 2z +— x4+ 1 :

(fun x -> x + 1)

Pour appliquer cette fonction a une autre expression, par exemple (5 + 3), on écrira donc :

(fun x -> x + 1) (56 + 3)

ce qui affiche bien 9. OCaml vérifie toujours que le type de l'argument d’une fonction

correspond bien au type attendu. Par exemple, ’expression suivante génerera une erreur :

1

(fun x > x + 1) 0.5

On peut donc mettre a jour notre définition des expressions :

Définition 4

Si A est une expression, alors est également une expression. Une telle expression
s’appelle une abstraction.

Dans les arbres de syntaxe, on pourra représenter les abstraction par le mot Fun.

Exemple 2

Voici I'arbre de syntaxe de ’expression] (fun x -> x + 1)(56 + 3) \

7 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

D Evaluation des expressions, environnements

Dans un langage impératif, on dit que 'on exécute une suite d’instructions. Dans langage
fonctionnel comme OCaml, on dit que I’'on évalue une expression. Evaluer une expression, c¢’est
la transformer en une valeur. Par exemple, lorsque 'on transforme en 5, on a évalué
I’expression

Considérons I'expression [3 + 2]. Cette expression est de type “un opérateur binaire appliqué
sur deux expressions”. On commence donc par évaluer les deux sous-expressions : [3] et [2]. Ces
deux expressions sont des constantes, elles s’évaluent donc en elles-méme. On applique alors
I'opérateur + sur les deux valeurs obtenus, on obtient 5.

Considérons maintenant 1’expression \ 3+ 2)x (1 -4) \ Cette expression est de type “un
opérateur binaire appliqué sur deux expressions”. On commence donc par évaluer les deux sous-
expressions : \ (3 +2) \ et \ 1 -4 \ Pour évaluer la premiere, on fait comme précédemment, on
obtient alors 5, et de maniere analogue, la deuxieme expression s’évalue en —3. Alors, 'expres-
sion initiale s’évalue en —15.

On peut donc donner un algorithme simple permettant d’évaluer une expression OCaml :

Algorithme 1 : Evaluation

Entrée(s) : Un arbre de syntaxe OCaml, c¢’est a dire une expression F
Sortie(s) : La valeur obtenue en évaluant £
si I/ est une constante c alors

L retourner c

si F est de la forme E.1 + E 2 alors

3
4 v, < Evaluer Ej;
5
6

N =

vy < Evaluer Ej;
retourner v; + vy

i I/ est de la forme E.1 - E 2 alors

7S

8 V] — Evaluer I
9 Vg <— Evaluer Es;
10 retourner v; — vy

// Ainsi de suite

Intéressons nous maintenant a l’expression \ (fun x -> x+1) (5+3) \ Etudions la manitre dont
OCaml évalue cette expression. Pour commencer, on évalue 5+3 ce qui donne 8. Ensuite, on
doit appliquer la fonction a I’argument 8. Pour cela, on stocke quelque part I'information ‘{x]
vaut 8”, et on évalue le corps de la fonction : [x + 1] On doit donc évaluer [x], et avec I'infor-
mation que l'on a stocké, on sait que le résultat est 8. Ainsi, on évalue x + 1 & 9, et c’est le
résultat de I'expression initiale.

Ainsi, lorsque l'on évalue une expression OCaml, on doit stocker des informations sur les
différentes variables. L’objet servant a stocker ces informations s’appelle un environnement
ou un contexte.

Exercice 1

Dessiner 'arbre de syntaxe de I'expression |2 * 3 + (2 - 1 / 3) \, et lui appliquer l'algo-
rithme d’évaluation.

MP2I Pierre de Fermat 2025-2026 8

1. PREMIERS PROGRAMMES

Définition 5

Un enwvironnement est un ensemble d’associations de la forme x — v, ol x est un
identifiant (i.e. un nom de variable) et v une valeur.

Etant donné F une expression et p un environnement, on peut évaluer E dans p. Modifions
notre algorithme d’évaluation pour prendre en compte I’environnement :

Algorithme 2 : Evaluer(F,p)

Entrée(s) : F un arbre de syntaxe, p un environnement
Sortie(s) : La valeur obtenue en évaluant £ dans p

si I/ est une constante c alors

[uny

2 L retourner c
3 si I est une vartable v alors
4 L retourner la valeur associée a v dans p

5 si I/ est de la forme (fun = -> E_1) E 2 alors
6 vy <— évaluer Fy dans p;

7 P < p mis a jour avec x — vy;

8 retourner Evaluer(F1,p')

i I/ est de la forme E_.1 + E 2 alors

10 vy < Evaluer(FEy,p);

11 vy <— Evaluer(Es, p);
12 retourner v; + vy

©
0

// Ainsi de suite pour les autres opérateurs binaires...

Exercice 2

Pour chacune des expressions suivantes, dessiner ’arbre de syntaxe, et appliquer 1’algo-
rithme d’évaluation a partir d’un contexte vide.

1 |(fun a -> a +. 3.) 6.;;
2 | (fun x > x + (fun y -> x*y) (x+1)) ((fun x->6-x) 3);;

E Fonctions d’ordre supérieur

Considérons la fonction suivante :

1 |[fun £ -> 2 x f 2

Si 'on tape 'expression précédente dans utop, I'interpréteur nous dit que le résultat est
de type](int -> int)-> int \ Cette fonction prend donc en parametre une fonction de type

[int -> int], et renvoie un entier. Par exemple :

1 |(fun £ -> 2 * £ 2) (fun x> x + 1) ;;

Q8. Dessiner I'arbre de 'expression précédente et appliquer ’algorithme d’évaluation.

Q9. En langage naturel, que fait la fonction [fun £ -> 2 x £ 2|7

9 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

Définition 6
On dit qu’une fonction est d’ordre supérieur si elle prend en argument une fonction ou
renvoie une fonction.

Exercice 3

Décrire les fonctions suivantes en francais.

1 |fun £ => (fun x > f (f %)) ;;
2 |[fun £ -> (fun x -> (f (x +. 0.00001) -. f x) /. 0.00001) ;;
3 |fun k -> (fun y -> k*y) ;;

F Syntaxe “let in”

Il va vite étre compliqué de construire des expressions lisibles. Afin de rendre le code
plus digeste, on utilise en OCaml une syntaxe qui ressemble aux affectations de variable
des programmes impératif. Cette syntaxe est construite avec les deux mots-clés et [in].
Par exemple :

1 |let x = 2 in
2 |x + 3;;

Pour évaluer une expression de la forme [let x = el in e2], on évalue en une valeur v
puis on évalue dans I'environnement ([x]+ v1). La preuve que ce n’est pas une affectation
de variable est que si I'on essaie d’évaluer x apres avoir tapé cette expression, on obtient une
erreur car x n’est pas connu. En réalité, x n’existe dans le contexte que lors de I’évaluation de
la partie droite du let in.

Remarque 2

[let x = el in e2]est un raccourci pour dire] (fun x -> e2)el;; | Lorsqu'une syntaxe sert
simplement a raccourcir le code, ou a faciliter son utilisation, sans rajouter de fonctionnalité,
on dit que c’est du sucre syntarique.

On peut imbriquer les let ¢n comme on veut :

Q10. Taper les expressions suivantes :

1 |let x = 3 in

2 |let y = 5 in

3 |x +y;;

4

5 [let x =

6 let t = 3.2 in
7 t *. 5.0

8

in (x < 31.0);;

Lorsque l'on écrit [1let x = A in BJ, on peut voir ga comme rajouter au contexte une valeur
pour z, avant de calculer B. Quand on met plusieurs let in a la suite, par exemple

1 |let x = 3 in
2 |let y = 5 in
3 1x +vy;;

MP2I Pierre de Fermat 2025-2026 10

1. PREMIERS PROGRAMMES

on construit le contexte en y ajoutant petit a petit des informations sur les variables.
Dans les programmes OCaml et dans l'interpréteur, il existe un contexte global. Pour ra-

13 2

jouter une valeur au contexte global dans l'interpréteur, il suffit de remplacer le “in” par “;;”.

Q11. Taper le code suivant dans utop :

1 |1let x = 3;;

2 |let y = 5;;

3 |x+y;;

4 |let £ = fun z > (x + z);;
5 |f 1;;

6 |let x = 50;;

7f 1;;

Q12. Que remarque-t’on avec les 4 dernieres lignes ?

Remarque 3

let signifie “soit” en anglais, donc [let x = ... ;;]se dirait en francais “soit x égal a ...”.
Cette syntaxe est donc inspirée du vocabulaire mathématique.

Pour les fonctions, il existe un deuxieme niveau de sucre syntaxique, qui consiste a éliminer

le mot clé et la fleche.
Q13. Taper le code suivant :

1 |let f = fun x -> x * X ;;
2 |let g x = x * X3,

Regardons la fonction suivante :

1 |let add x = fun y -> x + y;;

cette fonction est de type \int -> (int -> int) \ Autrement dit, elle prend en entrée un
entier, et renvoie une fonction. Pour k entier, | add k |est la fonction qui ajoute k a son argument.
Donc, on peut écrire :

1 |let £ = add 3;;
2 |let x = f 5;;

ou meme :

1 |let x = (add 3) 5;;

En OCaml, le parenthésage se fait automatiquement a gauche. Autrement dit, les deux
expressions suivantes sont équivalentes :

1 | (add 3) 5;;
2 |add 3 5;;

Reprenons la fonction [add]. On peut utiliser un nouveau niveau de sucre syntaxique et la
définir comme suit :

1 |let add xy = x + ¥;;

Formellement, cela veut dire que la fonction add prend un argument [x], et renvoie une
fonction qui prend elle méme un argument [y] et qui renvoie x + y. Informellement, on dira que
prend deux arguments, x et y. Cependant, c’est un abus de langage!

11 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

G Type d’une fonction

Pour une fonction f définie par [let £ x1 x2 ... xn = e], OCaml donne une signature a
f, qui correspond aux types des parametres et de la valeur calculée. Par exemple :

1 |let ma_fonction f x y = f (x +y) + £(x - y);;

Cette ligne affiche :
val ma_fonction : (int -> int) -> int -> int -> int = <fun>

On peut lire cette ligne comme :

— prend 3 parametres :

1. Une fonction de type
2. Une valeur de type
3. Une valeur de type

— renvoie une valeur de type

H Typage

On a pu remarquer depuis le début du chapitre qu’OCaml peut deviner les types des ex-
pressions, grace a un systeme appelé I’inférence de type. Ecrivons le code de la fonction
tdentité, qui renvoie son entrée :

1 |let f x = x3;;

Le type de cette fonction est ['a -> 'a]. Cette notation un peu particuliere veut dire : “pour
tout type «, on peut donner a la fonction le type @ — «”. Contrairement au C, en OCaml,
une fonction peut prendre et renvoyer plusieurs types totalement différents. Par exemple, la
fonction identité peut prendre n’importe quel type et renvoie une valeur du meéme type que son
entrée.

Définition 7
On dit qu’une fonction est polymorphe si elle peut prendre en entrée et renvoyer plusieurs
types.

On dit qu’OCaml utilise le polymorphisme de type.

Introduisons une nouvelle syntaxe : | (x1, x2, ..., xn) | En OCaml, comme en Python, on
peut créer des tuples. Regardons le type des tuples :

Q14. Taper les expressions suivantes et regarder leur type :

1 |let p1t = (1, 2, 3) ;;
2 |let p2 = (1, 'a', "toto", 4);;
3 |let diago x = (x, x);;

Si eq,es,...,6, sont des expressions de types respectifs \tl, t2, ..., tn \, alors le tuple
(e1,€9,...,€,) est de type [t1 * t2 * ... * tn]. On dit que c’est un type produit.

Pour utiliser un tuple, il est nécessaire de le déstructurer. Cela signifie que l'on va extraire
du tuple les différentes composantes. Par exemple :

1 |let p1 = (1, 2, 3) ;;
2 |let (x, y, z) = pl;;

MP2] Pierre de Fermat 2025-2026 12

1. PREMIERS PROGRAMMES

On a déstructuré en utilisant un tuple de variables ayant la méme structure :
(x, y, 2)| Lorsque l'on déstructure ainsi un tuple, ou n’importe quelle autre type (cf plus
loin), on parle de let déstructurant.

On peut également déstructurer des tuples directement dans les parametres d’une fonction.
Par exemple, les deux fonctions suivantes sont équivalentes :

let echangel p =
let (x, y) = p in (y, %)

N R

let echange2 (x, y) = (y, x)

Il faut bien noter que les deux fonctions ont la méme signature : \ ("a * '"p)-> ('b * 'a)|

Ces deux fonctions prennent donc un seul argument, de type .

13 MP2I Pierre de Fermat 2025-2026

1. PREMIERS PROGRAMMES

I

00 O Uik WK

Récapitulatif

Pour faire des commentaires en OCaml, on les entoure par . Par exemple :

(* produit de x et y *)
let mul x y = x * y

Revoyons toutes les notions vues jusqu’ici :

— Les types de base : int, float, bool, char, string, unit

— Les opérations sur ces types : comme en C. Le non booléen se note et les opérateurs
flottants nécessitent un point : au lieu de [+] et idem pour les autres.

Type t | Opérateurs binaires pour t Opérateurs unaires | Type de I'expression
pour t composée
int‘ , E], , , ‘mod‘ E] int‘

float| | [+ =L [*1[/.] (puissance) | [-.] float

=L =l =K =) bool
(“différent de”)

bool , IIl not bool

i

char
string| | [~] (concaténation) string
— On peut ajouter une variable au contexte globale avec [1et x = ... ;;| et ajouter une
variable dans un contexte local avec [let x = ... in ...]

— On peut définir des fonctions avec la syntaxe suivante :

1 |let f x1 x2 ... Xn =
2

— On applique une fonction avec :
1

f el e2 ... ek

ol [el, e2, ... ek|sont des expressions ayant des types compatibles avec la signature de

la fonction [£].

— Les parentheses servent a encadrer les sous-expressions et pas a appliquer les fonctions

Voici un exemple de programme mettant en oeuvre ces différentes notions :

let x = 3;;
let y = 5;;
let z =3 x5 ;;

(* composée de f et g, i.e. la fonction h
telle que h(x) = £(g(x)) *)

let composition f g =
fun x > f (g x);;

(* double de x *)
let double x = 2%*x;;

let u = composition double int_of_string ;;
let a = u "12";; (% vaut 24 *)

let quadrupler = composition double double;;
let b = quadrupler 5;; (* vaut 20 *)

MP2] Pierre de Fermat 2025-2026 14

1. PREMIERS PROGRAMMES

Quiz Pour chacune des expressions suivantes, prédire son type et sa valeur :

0 O Ui Wi

I I I I N N B N B N R e e e e T
NN OO U W OO Uk WD~ OO

(x Q1 %)

let g x = 2%x in

let £fx=gx+1in
f 5+ f 3;;

(x Q2 *)

let double x = 2%x in
let triple x = 3*x in
double (triple 5);;

(* Q3 *)

let s = "bonjour " in

let saluer x = s ~ x =~ " !I" in
let s = "salut " in

saluer "Jérémy";;

(x Q4 *)

let fxyz=(x2z) (yz)in

let gx=1let x =x-11in x * x in
let h x = fun y -> let x = y in x+1 in
fheg3;;

(x Q5 *)

let uf (x, y) =f xyin

let g = u (fun x -> (fun y -> x y)) in
g ((fun a -> a+3), 5);;

15/136]

MP2I Pierre de Fermat 2025-2026

2. ELEMENTS DE BASE D’OCAML

2 Eléments de base d’0OCaml

Etudions plusieurs éléments du langage OCaml. Pour chaque nouvel élément, on regardera :
— Un exemple simple;
— La syntaxe;
— Le typage, c’est a dire les regles a appliquer pour typer I'expression ;

— La sémantique, c’est a dire la maniere dont on évalue la valeur de 1’élément.

A If-then else

Comme tous les langages, OCaml dispose d’une construction if-then-else :

(* Renvoie le maximum entre x et y *)
let maximum x y =

if x <y then y

else x

(* applique un ET logique sur a et b deux booléensx)
let logic_and a b =
if a then b else false

0O Ui Wi

La syntaxe est la suivante :

1 |if E1 then E2 else E3

ou E1, E2 et E3 sont des expressions.

Pour le typage, I'expression E1 doit étre du type [bool], et les expressions E2 et E'3 doivent
étre du méme type T, et alors ’expression totale est de type T également.

Pour la sémantique, voici comment évaluer la valeur de [if E1 then E2 else E3]:

1. Evaluer E1 en une valeur v,

2. Si vy est [true], évaluer E2

3. Sinon, évaluer E3

Comme les deux branches du if-else doivent avoir le méme type, on ne peut pas avoir de if

sans else. Une exception : le type :

1 |if true then ();;
2 |if x < y then print_int x;;

MP2I Pierre de Fermat 2025-2026 16

2. ELEMENTS DE BASE D’OCAML

B Matching

Les mots-clés match et with permettent de faire des disjonctions de cas plus puissantes
qu’'un simple if-else. Voyons quelques exemple :

1 | (x Renvoie le nom de x si c'est un chiffre *)

2 |let nom x = match x with

3 | 0 -> "Zero"

4 [1 -> "Un"

5 e

6 | 9 -> "Neuf"

7

8 | (* renvoie true si x vaut 0, false sinon *)

9 |let is_zero x = match x with

10 | 0 => true (* si x vaut 0, alors true *)

11 | vy -> false (* si x vaut n'importe quoi d'autre, alors false *)
12

13

14 | (* Premiére position d'un O du triplet t. -1 si t n'a aucun 0 *)
15 |let zero_pos t = match t with

16 | (0, y, z) => 0 (* si la lere composante vaut O *)

17 | (x, 0, z) -> 1 (% si la 2eme composante vaut 0 *)

18 | (x, y, 00 => 2 (* si la 3eme composante vaut 0 *)

19 | u -> -1 (* Tous les autres cas *)

20

21 | (* Renvoie le produit des composantes de p si aucune n'est nulle, sinon la somme *)
22 |let prod_or_sum p = match f 0, f 1 with

23 | 0, y, z2) >y +z

24 | (x, 0, z2) > x + z

25 | (x, y, 00 >x+y

26 | u->x*yx*z
La syntaxe précise de cette construction est :

1 |match E with

2 || Ml -> E1

31]...

4 || Mn -> En
ou E, E1, ... En sont des expressions, et ou M1, ..., Mn est un motif.

Définition 8

Un motif est (définition temporaire) :
— Soit une constante
— soit une variable

— soit un tuple de motifs

Toutes les variables d’un motif doivent étre distinctes.

Un motif représente un squelette de valeur. Par exemple, est un motif qui veut dire
“n’importe quelle valeur”, et | (x, (y, 0), z, (t, u, 5)) |est un motif signifiant “un quadruplet,
dont :

1. le premier membre est n’importe quoi,

2. le deuxieme est un couple dont la deuxieme composante est nulle
3. le troisieme est n’importe quoi

4. le quatrieme est un triplet dont la troisieme composante est 5

17 MP2I Pierre de Fermat 2025-2026

2. ELEMENTS DE BASE D’OCAML

Ainsi, si 'on compare ce dernier motif avec\ 3, (2, 0, 3, (7, 8, 0)) ‘, le motif et la valeur
correspondent, et alors [x] prend la valeur 3, [y| prend la valeur 2, etc...
Attention, les termes suivants ne sont pas des motifs :

1 || 1+x (x pas d'opérateur autorisé *)
2 |1 (x, x) (*x pas de variable en double *)

Le typage d'un match with est comme suit : E peut étre de n'importe quel type, du moment
que le type respecte les motifs M1, ... Mn. Les E1, ..., En doivent étre d’'un méme type T, et
alors 'expression totale est de type T également. Pour chaque couple Mk, Ek, il faut que les
types des variables de Mk soient cohérents dans Ek.

La sémantique de cette construction est comme suit. Pour évaluer I'expression :

match E with
| M1 -> E1

ISR Ol

| Mn -> En

il faut :
1. Evaluer E en une valeur v
2. Comparer v avec les motifs M1, ..., Mn, dans 'ordre

3. Lorsqu’un motif Mk correspond, on évalue ’expression Ek correspondante, en ayant ajouté
au contexte les variables du motif Mk en les faisant correspondre a v.

Exemple 3

Voyons en détail comme est évaluée I’expression suivante :

match (1, (2, 1+2), 3+1) with

| (0, _, 2) >0

| (x, (y, 0), z) > (x - y) * z
| (x, (v,), z2) > (x+7y) *xz

ENEGCR N

La variable —, appelée “underscore”, joue un role particulier : elle peut étre présente plu-
sieurs fois dans un motif, mais ne figurera pas dans le contexte. On appelle ce motif particulier
un joker, ou wildcard en anglais, il sert donc a ignorer ou a jeter a la poubelle des parties de
la valeur matchée. Par exemple :

1 | (x Calcule x*y *)

2 |let mult x y = match x, y with
3110, _—->0

411 -, 0->0

5|1 _ => x*y

MP2I Pierre de Fermat 2025-2026 18

2. ELEMENTS DE BASE D’OCAML

Variables et motifs Un motif est un squelette, il décrit donc une forme mais ne contient
pas de valeur. Par exemple :

1 |let equal x y =

2 match x with
3 | y -> true
4 | _ -> false

La fonction ci-dessus n’est pas correcte. En effet, le dans le premier motif n’a
aucun lien avec le [y] en parametre. On pourrait remplacer le [y] du motif par n’importe quel
identifiant, et méme par un underscore :

let equal x y =
match x with
| _ =-> true
| _ -> false

W N =

Il est alors clair que cette fonction renvoie toujours true!

A retenir : on ne peut pas utiliser une variable préexistante dans un motif pour comparer la
valeur du match a la valeur de cette variable.

Matching incomplet Lorsqu’un match with ne couvre pas tous les cas possibles du type
concerné, on dit qu’il est incomplet, ou non-exhaustif. Par exemple :

1 |let £ x = match x with
211 0->1
311 2->3

Si I'on essaie d’évaluer cette expression, OCaml va raler, et dire que le matching n’est pas
exhaustif. Il donnera méme un exemple de valeur qui n’est pas matchée! On doit toujours
couvrir tous les cas dans un match with. Cependant, il se peut qu'un cas ne soit pas sensé
arriver car on 'empéche dans le code. Dans ce cas, on peut utiliser la fonction [failwith], qui
affiche un message d’erreur et arréte le programme. Par exemple :

1 |let parite x = x mod 2

2 |let est_pair y = match parite y with
3|1 0 ->true

4] 1 -> false

5

| _ -> failwith "Ne doit pas arriver"

Il ne faut jamais laisser un matching incomplet.

On peut aussi utiliser les motifs avec les let-in. On parle alors de let déstructurant. On
peut aussi utiliser le joker dans ce contexte :

1 |let p = (2, "bla", true)

2 |let a, b, c =p

3

4 |let p = "important", "a jeter", "aussi a jeter"
5

6 |[let x, _, _ =7p

19 MP2I Pierre de Fermat 2025-2026

2. ELEMENTS DE BASE D’OCAML

C Fonctions récursives

En OCaml, on n’utilise pas (pour I'instant) de boucle for ou de boucle while. A la place,
on utilise des fonctions récursives, c’est a dire des fonctions qui s’appellent elles-méme. La
récursivité est au coeur de la programmation fonctionnelle.

Par exemple, écrivons une fonction qui calcule a® pour a,b € N. Par définition :

b
Va e NVbeN,a’ =]]a
i=1
Cependant, on peut remarquer la chose suivante pour a,b € N :
— Sib=0,a" =1

b g1

— Sinon, a X a

Ces relations permettent de caractériser ou méme de définir récursivement la quantité
a’. On voudrait donc écrire :

1 |let puissance a b =
2 if b = 0 then 1
3 else a * puissance a (b-1)

mais cela n’est pas accepté. En effet, au moment ou I'on écrit le corps de la fonction puis-
sance, 'identifiant ne fait pas partie de ’environnement. En OCaml, pour autoriser
une fonction a utiliser son propre nom, i.e. pour préciser que l'on écrit une fonction récursive,
on utilise le mot clé let rec :

1 |let rec puissance a b =
2 if b = 0 then 1
3 else a * puissance a (b-1)

Le typage et la sémantique du let rec sont les mémes que pour le let classique, mais a
I’évaluation, une fonction récursive se trouve dans son propre contexte.

Exercice 4

Créez un fichier “exp.ml”. Vous pourrez I'exécuter dans I'interpréteur en y tapant :

1 |#use "exp.ml";;

Q1. Recopiez la fonction puissance. Exécutez le code dans l'interpréteur puis testez
la fonction sur quelques exemples.

Q2. Trouver une formule de récurrence pour la factorielle, et en déduire une fonction
OCaml [factorielle: int -> int|.

Q3. Trouver une formule de récurrence permettant d’écrire ’exponentiation rapide
sous forme récursive :

— Sib=0,[exp a 0] = ..

— Sinon :

— Si b est pair, = ... (faire apparaitre un terme de la forme)
— Sinon, = ... (faire apparaitre un terme de la forme)

Q4. Implémenter I’exponentiation rapide, ré-exécuter le fichier “exp.ml” puis tester la
fonction.

MP2I Pierre de Fermat 2025-2026 20

2. ELEMENTS DE BASE D’OCAML

D Listes
Un nouveau type : les listes. En OCaml, les listes sont définies récursivement, comme suit :

— La liste vide, notée , est une liste

— Si E1 est une expression de type ['a] et E2 une expression de type ['a list], alors[E1::E2]
est une liste, contenant E'1 suivi des éléments de E2. On dit que E1 est la téte de liste,
et que E2 est la queue de liste.

Attention, la téte d’une liste est un élément, mais la queue d’une liste est une liste. On peut
donc voir les listes OCaml comme des piles : on n’a acces qu’a 1’élément au début d’une liste.

Exemple 4

Voyons des exemples de listes :

let 1_vide = []
let 1_simple = 3::6::8::[] (* comme 3 :: (6 :: (8 :: [1)) %)

(x Renvoie une liste de taille n contenant
exclusivement des 1 *)

let rec ones n = match n with
| o> [
| _ ->1:: ones (n-1)

O © 0O Ui WwN

—_

let cing_uns = ones 5

On remarque qu’OCaml affiche les listes sous la forme‘ [vi; v2; ... ; vnl ‘ On peut également
utiliser cette syntaxe pour définir des listes :

1 |let 1_a
2 |let 1_b

[1;2;3;4;5;6]
1::2::3::4::5::6::[] ;

La premiere version est du sucre syntaxique, c’est la deuxieme forme qui est plus fidele a la
forme qu’ont les listes.

Une liste doit contenir uniquement des expressions d’'un méme type T, et dans ce cas, la

liste sera de type [T 1ist] Par exemple, | ["blabla"; "bli"; "toto"]|est de type ,
mais contient des entiers et des flottants, et n’est donc pas une expression bien
typée.

Les listes forment un type polymorphique. Par exemple, la liste vide est typée
par OCaml. Cela signifie que c’est une liste de type [T 1ist], pour tout type T. Ainsi, lorsque
I'on écrira des fonctions générales sur les listes, on pourra les appliquer sur des listes de n’im-
porte quel type!

Les listes viennent également agrandir la liste des motifs :

— est un motif
— si[M] et [L] sont des motifs, alors est un motif

Par exemple : est un motif signifiant ”"deux éléments puis une liste”. Ce mo-
tif sera compatible avec toutes les listes de taille au moins 2, et permettra de récupérer les
deux premiers éléments, et la liste des éléments suivants. est un motif signi-
fiant "une liste de couples, d’au moins un élément”. Il permettra de matcher par exemple

[[("bla", 5); ("titi", 129)]], et alors [x] vaudra et [y] vaudra [5].

21 MP2I Pierre de Fermat 2025-2026

—_

2. ELEMENTS DE BASE D’OCAML

Utilisons ces motifs pour créer quelques fonctions :

1 | (x Renvoie la somme des éléments de 1: int list *)

2 |let rec somme_liste 1 = match 1 with

3 | 1 >0

4 | x::q -> x + somme_liste q

5

6 | (x Renvoie true si la liste est de taille pair, false sinon *)

7 |let rec taille_paire 1 = match 1 with

8 | [J -> true

9 | x::[]1 -> false

0 | x::y::q => taille_paire q (* enlever deux éléments conserve la parité *)

Tri par sélection Ecrivons le tri par sélection en OCaml. On aura besoin d’une fonction de
sélection qui extrait le max d’une liste : codons une fonction] selection: 'a list -> ('a * 'a list) \
qui étant donné une liste L renvoie le couple (x, L') avec x le max de L, et L’ la liste L ol une
occurence de x a été supprimée.

Pour coder cette fonction, on doit réfléchir inductivement : si j’ai une liste @) et que j’ai
obtenu son max m et la liste Q' des autres éléments, comment faire pour obtenir le max de
x Q7 1l suffit de regarder le maximum entre x et m : c¢’est le maximum de z :: @), et I'autre
peut étre remis au début de la liste. Cette remarque nous donne une définition inductive de la
fonction :

(* Couple (a, t) avec a le maximum de 1 et t la
liste 1 privée d'une occurence de a *)
let rec selection 1 = match 1 with
| [1 -> failwith "empty list"
| x::[0 > x, [
| x::q -> let (m, q') = selection q in
if x > m then (x, m::q'")
else (m, x::q')

0 O Ui WK

A partir de cette fonction, on peut construire aisément une fonction récursive de tri par
sélection : si la liste n’est pas vide, on extrait son maximum, on trie les éléments restants et on
rajoute I'élément extrait au début.

1 |let rec select_sort 1 = match 1 with
2 [00 ->11
3 | x::q => let (m, q) = selection 1 in m::(select_sort q)

MP2I Pierre de Fermat 2025-2026 22

2. ELEMENTS DE BASE D’OCAML

E Alias de type

En OCaml, on peut définir ses propres types. Par exemple, comme en C, on peut redéfinir
un type pré-existant en lui donnant un autre nom :

type nombre = int
type vecteur3d = float * float * float

(* fonctions [N -> |B *)
type filtre_entier = int -> bool

T W N =

Bien qu’OCaml devine tout seul le type des expressions que l'on écrit, il ne devine pas
toujours par lui méme les types définis ainsi :

1 |let x = (0., 0., 0.) (x affiche float*float*float *)
let y = 5 (* affiche nombre plutdt que int *)

W Ly

Cependant, on peut spécifier le type des variables avec comme suit :

1 |let x: int = 5

2

3 |let f (x:int) : int = x + 1 (* prend en entrée un int et renvoie un int *)
4

5 |let £f: (int -> int) = fun x -> x - 1

6

7 |let p: vecteur3d = (2., 3.2, -8.54)

8

9 |let equal_b: filtre_entier = fun x -> x = 5

10

11 |let produit_scalaire (a:vecteur3d) (b:vecteur3d) : float =
12 let xa, ya, za = a in

13 let xb, yb, zb = b in

14 xa *. xb +. ya *. yb +. za *. zb

15

16

17 | (* Ici, le type vecteur3d serait inféré automatiquement acause du type
18 de produit_scalaire *)
19 |let norme_carree (a:vecteur3d) : float = produit_scalaire a a

F Type somme

Le type produit correspond au produit cartésien d’ensemble. Le type somme correspond
plutot a 'union disjointe.

Un type somme permet de représenter des catégories d’objets ayant plusieurs “cas”. Un
tel type est constitué de constructeurs, qui sont les différents mots clés que I'on utilise pour
construire des objets de ce type. Chaque constructeur correspond a un “cas” différent.

Exemple 5
On veut implémenter un type pour les fournitures scolaires. On veut pouvoir représenter :
— Les stylos BIC, qui peuvent étre de couleurs différentes

— Les regles, qui peuvent étre de tailles différentes et peuvent étre centrées ou pas (i.e.
0 est au centre ou au bord)

— Les gommes

23 MP2I Pierre de Fermat 2025-2026

2. ELEMENTS DE BASE D’OCAML

Créez un fichier “fourniture.ml”. Vous pourrez ’exécuter dans l'interpréteur en tapant :

1 | #use "fourniture.ml";;

On définit le type somme avec :

type fourniture =
| Stylo of string (* couleur *)
| Regle of int * bool (* taille en cm, centrée ou non *)
| Gomme

=W N

Ce qui se lit : “Il y a trois types de fournitures : Les stylos, qui sont paramétrés par une
chaine de caracteres, les regles, paramétrées par un entier et un booléen, et les gommes”.
Les commentaires précisent a quoi servent les parametres.

On peut ensuite créer des éléments de ce type :

let x = Stylo "rouge"

let r1 = Regle (30, true)
let r2 = Regle (20, false)
let g = Gomme

=W N

Notons qu’OCaml peut automatiquement tester 1’égalité entre deux objets d’'un méme
type :
1 |let x = Stylo "rouge"
let y = Stylo "rouge";;
3 |x =y;; (x Vaut true *)

[\)

La maniere principale de manipuler les types définis ainsi est le match with. Par
exemple, on suppose que le prix des fournitures est comme suit :

— Les gommes cotitent 1,50€ ;
— Les stylos bleus cotitent 1,20€, les autres coutent 1€ ;

— Une regle de [centimetres cotte 1 + %5 euros.

Voici comment on implémenterait une fonction calculant le prix d’une fourniture en

OCaml :

(* prix de fourn en euros *)
let prix (fourn: fourniture) : float =
match fourn with
| Gomme -> 1.5
| Stylo "bleu" -> 1.2
| Stylo _ -> 1.0
| Regle(longueur, _) -> 1.0 +. float_of_int longueur /. 15.0

N O U W N

On peut représenter une trousse comme une liste de fournitures. Ecrivons une fonction
qui calcule le nombre de gommes dans une trousse :

type trousse = fourniture list;;

let rec nombre_gommes (t:trousse) : int =
match t with
| 1 >0
| Gomme::q -> 1 + nombre_gommes q
| _::q -> nombre_gommes q

N O Otk W N

MP2] Pierre de Fermat 2025-2026 24

2. ELEMENTS DE BASE D’OCAML

T W N

Exercice 5

On suppose qu'une trousse seule cotite 5€. Ecrire une fonction calculant le prix total d’une
trousse, en comptant tout ce qu’elle contient :

1 |let rec prix_trousse (t: trousse) : float = ...

La syntaxe pour les type somme est donc;

type nom_type =
Constructeurl of typel (* ou Constructeurl *)
| Constructeur2 of type2 (* ou Constructeur2 *)

| ConstructeurN of typeN (* ou ConstructeurN *)

On rajoute également a la définition des motifs :

— Si est un constructeur d'un type somme, et [M] est un motif, alors est un

motif.

Rien n’empéche un type de s’auto-référencer, on dit alors que c’est un type tnductif, ou

récursif. Par exemple, si 'on veut créer un type représentant les expressions arithmétiques :

—

=N

type expr =
| Constante of int
| Plus of expr * expr
| Fois of expr * expr

Autrement dit : une expression est soit une constante entiere, soit la somme de deux ex-

pressions soit le produit de deux expressions. L’expression (1 + 2) s’écrira :

1

0~ O UL i W N =

Plus (1, 2)

L’expression (1 + 2) % (34 7% 6) s’écrira :

let my_expr =
Fois (

Plus(
Constante 1,
Constante 2

),

Plus(
Constante 3,
Fois (

Constante 7,
Constante 6

)

25 MP2I Pierre de Fermat 2025-2026

2. ELEMENTS DE BASE D’OCAML

Pour manipuler des types inductifs, il faudra généralement utiliser des fonctions récursives.
Sur I'exemple précédent, écrivons une fonction qui évalue une expression arithmétique :

let rec eval e = match e with
| Constante n -> n
| Plus (el, e2) —> eval el + eval e2
| Fois (el, e2) -> eval el * eval e2

W N =

(Remarquez que cette fonction ressemble de pres a 1’algorithme d’évaluation des expressions
OCaml décrit plus tot dans le chapitre. En fait, a ce stade, vous pourriez créer un type pour
les expressions OCaml, un type pour les environnement, et recoder OCaml en OCaml!)

Tentons de recoder le type des listes OCaml. On remarque que les listes sont polymorphes,
autrement dit elles peuvent s’adapter a des types différents. On voudrait écrire :

1 |type liste =
| Vide (¥ liste vide *)
3 | Cons of 'a * liste (* Constructeur: Cons (x, q) sera x suivi de q *);;

[\)

Cependant, OCaml affiche : Error: The type variable ’a is unbound in this type
declaration.
Pour définir ce type, on doit le paramétrer :

1 |type 'a liste =
2 | Vide
3 | Cons of 'a * ('a liste) ;;
La syntaxe générale des types paramétrés est :
1 |type ('al, 'a2, ..., 'an) nom_type =
2 | Constructeurl of typel
3 .
4 | Constructeurk of typek
5153
On peut ensuite manipuler ce type normalement, et OCaml gerera le polymorphisme :
1 |let ma_liste_1 = Cons (5, Cons(6, Vide)) ;; (x [5, 6] *)
2 |let ma_liste_2 = Cons ("bla", Cons("blo", Comns ("bli", Vide))) ;; (* ["bla", "blo", "bli
Il] *)
3
4 |let tete 1 = match 1 with
5 | Vide -> failwith "liste vide"
6 | Cons (x, @) —> x
755

Exercice 6

Ecrire une fonction |vraie_liste: 'a liste -> 'a list] qui transforme une liste de notre
type liste maison en une liste standard OCaml :

MP2I Pierre de Fermat 2025-2026 26

3. RECURSIVITE

3 Récursivité

A Correction d’une fonction récursive

Lorsque I'on écrit du code OCaml, on n’utilise pas de boucles. Donc, il nous faut un nouvel
outil pour prouver la correction des fonctions. Considérons un exemple simple : la multiplica-
tion :

1 | (x Renvoie x fois y, pour x, y entiers positifs x*)
2 |let rec mult (x: int) (y: int) : int =

3 if x = 0 then O

4 else y + mult (x-1) y

Cette fonction est correcte si elle renvoie bien ce qui est indiqué dans sa documentation,
donc ici si elle renvoie bien le produit de ses deux arguments. Remarquons que le commentaire
de la fonction précise une précondition nécessaire a la correction : z et y doivent étre positifs.

Pour étudier cette expression, on introduit la fonction mathématique correspondante :

N2 — N
0 sin=0

mult : z,n —)
{x—l—mult(x,n—l) sinon

Cette fonction est définie par récurrence. Commencons par montrer qu’elle est bien
définie, c’est a dire que la fonction OCaml correspondante termine. Pour cela, il faut remarquer
qu'un appel a la fonction mult cause un appel récursif, sur une entrée strictement plus petite.
Comme les entrées sont dans N (par précondition), et comme il n’existe pas de suite infinie
strictement décroissante dans N, la fonction s’arréte bien.

Montrer la correction de la fonction, ¢’est montrer la propriété suivante :

Ve € N,Vn € Nmult(z,n) =x xn
Pour cela, on procede par récurrence. Plus précisément, posons z € N, et montrons par
récurrence sur N la propriété suivante :
VYn € N, P(n) : mult(z,n) =z xn

— Pour n =0, mult(z,0) =0 : P(0) est vraie.

— Soit n € N*, supposons P(n — 1). Alors, mult(z,n — 1) vaut X (n — 1). Or, n > 0 donc
mult(z,n) = z + mult(z,n — 1) = 2 + 2z x (n — 1) par hypothese de récurrence. Donc,
mult(z,n) = x x n : P(n) est vraie

27 MP2I Pierre de Fermat 2025-2026

—_

3. RECURSIVITE

= O © 00O Uik Wi+

tons Ly, ...

Voyons un exemple plus complexe, en étudiant le tri par insertion :

(* insert x 1 est une copie de 1 ol x a été inséré dans 1'ordre.
1 doit &tre triée *)

let rec insert (x: 'a list) (1: 'a list) : 'a list = match 1 with
[00 > [x]
| y::q => if x < y then x :: 1
else y :: insert x q ;;

(* insert_sort 1 est une copie triée de 1 *)
let rec insert_sort (1: 'a list) : 'a list = match 1 with
| 0 -10

| x::q -> let q = insert_sort q in insert x q ;;

On considere les fonctions mathématiques correspondantes. On ne décrit pas pour l'instant
I’ensemble mathématique précis ou vivent les listes, on y viendra au chapitre suivant.

[z] si L est vide

insert s, L = Sy @ si Ldelaformey: Qetx<y

y :: (insert(z,Q)) si L delaformey: Qetxz>y

[

_

tri_insert : L — {

si L est vide

(insert(x, tri_insert(Q)) si L de la forme z :: @

Ces fonctions sont définies par récurrence sur la taille de L. Au prochain chapitre, on dira
qu’elles sont définies par induction sur la structure des listes.

Commengons par la terminaison d’insert. On pose f : L + |L|. Soit L une liste, no-

, Ly, ... les listes sur lesquelles on appelle récursivement la fonction insert lors de

I'évaluation de insert(z, L). On remarque que la suite (f(Lg)) est strictement décroissante et

a valeurs dans N. C’est donc une suite finie : la fonction insert termine.

La terminaison de la fonction de tri se prouve de maniere analogue. Montrons mainte-
nant formellement la correction des deux fonctions. Au chapitre suivant, nous verrons une
généralisation du principe de récurrence qui permettra d’écrire de maniere beaucoup plus
¢élégante et courte les preuves de ce style.

— Pour insert : On raisonne par récurrence sur la taille de la liste L en entrée. On pose x
un élément a insérer. Montrons la propriété suivante par récurrence sur n € N :

Vn € N, P(n) : “VL liste de taille n, si L est triée, alors insert(z, L) est contient les

éléments de L ainsi que z, et est triée.”

e Si|L| =0 alors L =[], et [x] contient bien les éléments de L (personne) ainsi que x,

et est triée.

e Soit L une liste avec |L| > 0. On écrit L=y = Q. Siz<yalorsz:y:Q=x:L
est bien une copie de L ou x a été ajouté, triée. Sinon, par hypothese de récurrence,
insert(z, Q) est une copie triée de) ou x a été ajouté, et comme L est triée,
y <min@ et y < x. Dongc, y :: insert(z, Q)) est triée, et contient bien x ainsi que les

éléments de L, a savoir y et les éléments de @)

— Pour insert_sort : Exercice : Montrer par récurrence la propriété suivante :

Vn € N, P(n) : “VL liste de taille n, insert_sort(L) est triée et contient les éléments de

L‘”

MP2I Pierre de Fermat 2025-2026

28/36

—_

3. RECURSIVITE

B Récursivité terminale

On rappelle que les appels de fonctions nécessitent de réserver de la mémoire pour s’exécuter :
cette mémoire est réservée dans la pile d’appel (voir chapitre 3), et les appels récursifs viennent
s’ajouter les uns sur les autres. Dans un langage comme OCaml, ou les appels récursifs sont
un outil central de programmation, il faut faire attention a ne pas remplir la pile. En théorie,
il faudrait donc éviter de faire des appels récursifs trop profonds (par exemple avoir un million
de stack frames empilées les unes sur les autres). En pratique, certaines fonctions récursives
peuvent étre transformées en boucle par le compilateur, on peut donc les exécuter sans se sou-
cier de problemes de dépassement de pile. Voyons un exemple : considérons les deux fonctions
suivantes, qui permettent de calculer la factorielle.

(x factorielle n = n! *)
let rec factorielle n =
if n = 0 then 1
else n * factorielle (n-1)

(* factorielle_bis n accu = n! X accu *)
let rec factorielle_bis n accu =

if n = 0 then accu

else factorielle_bis (n-1) (accu*n)

= O © 00 O Ut ix Wi -

(* On remarque que factorielle_bis n 1 = factorielle n *)

Pour évaluer [factorielle 2|, on doit :

1. Calculer factorielle 2 :
(a) Caluler factorielle 1
i. Caluler factorielle 0
ii. On renvoie donc 1
(b) On obtient 1, on multiplie par 1, on renvoie donc 1

2. On obtient 1, on multiplie par 2, on renvoie donc 2

Ainsi, on doit plonger au fond des appels récursifs, puis remonter a la surface en appliquant
les opérations nécessaires. On doit donc empiler les appels de fonction les un sur les autres,
puis les dépiler. Donc, si l'on tente d’évaluer |factorielle 10000000], on aura une erreur de
dépassement de pile.

En revanche, pour évaluer |factorielle bis 2 1]:

1. Calculer factorielle_bis 2 1
(a) Calculer factorielle_bis 1 2
i. Calculer factorielle_bis 2 0
ii. On renvoie donc 2
On renvoie donc 2

On renvoie donc 2

Ici, la phase de “remontée a la surface” est triviale : elle sert juste a transmettre le résultat
vers I’appel initial. Autrement dit, on n’a pas besoin de sauvegarder les différentes stack frames
dans la pile, car on n’utilise plus leurs données une fois qu’on est entré dans un appel plus
profond. Les différentes stack frames peuvent donc se remplacer les unes les autres, au lieu de
s’empiler. Les compilateurs d’OCaml peuvent détecter les fonctions ayant cette propriété, et les
transformer en boucles dans le code machine généré. Sil’on évalue | factorielle_bis 10000000 1,
aucun probleme de pile!

29 MP2I Pierre de Fermat 2025-2026

3. RECURSIVITE

Définition 9

On appelle fonction récursive terminale (en anglais : tail-recursive) toute fonction
récursive ne nécessitant aucun traitement a la remontée d’une valeur.

Proposition 1

Les fonctions récursives terminales peuvent étre compilées / interprétées de fagon a garder
une taille de pile d’appel constante.

Remarquons que pour [factorielle_bis|, on n’écrit pas directement la fonction factorielle,
mais une fonction plus générale, que 'on applique avec un bon parametre ensuite. La pro-
grammation récursive terminale nécessite souvent d’utiliser une méthode par accumulateur
qui consiste a stocker le résultat temporaire dans un ou plusieurs des parametres, appelés les
accumulateurs.

Exemple 6

Prenons la fonction d’exponentiation rapide et tentons d’en trouver une version récursive
terminale.

1 |let rec fast_exp a b =

2 match (b, b mod 2) with

3 [(0, J) > 1

4 [(Z, 00 —> fast_exp (axa) (b/2)

5 | _ -> a x fast_exp (a*a) (b/2) (* Pas récursif terminal ! *)
On rappelle la version impérative de I’exponentiation rapide :

1 |int fast_exp(int a, int b){

2 int r =1, A = a, B = b;

3 while (B>0){ // invariant: r x AB =qab

4 if (B%2 == 1){

5 r = Axr;

6 }

7 a = AxA;

8 b = B/2;

9 }

10 return r;

11 |2

Nous allons utiliser I'invariant pour déterminer une fonction récursive terminale. Pour
A, B,r € N, notons f(A, B,r) = r x AB. L’invariant de boucle peut se réécrire : f(A, B,r) =
f(a,b,1) = a®. Autrement dit, la quantité f(A, B,r) reste constante au long de 'exécution,
et sa valeur est a’. Il nous suffit donc de déterminer une formule de récurrence permettant de
calculer f, ce que I'on obtient en traduisant le code de la boucle while :

f(A0,r) = r (sortie de boucle)
f(A,B,T) = f(A27 §7T) si B pair

f(A,B,r) = f(A%2 2L Ar) si B impair

2
Ces formules nous donnent immédiatement une version récursive terminale :

(x exp_mult a b r =rxab %)
let rec exp_mult a b r =
match (b, b mod 2) with
| (0, J) > r

W N =

MP2I Pierre de Fermat 2025-2026 30

3. RECURSIVITE

| (_, 0) -> exp_mult (axa) (b/2) r
| _ -> exp_mult (axa) (b/2) (axr)

(x exp a b = a® %)
let exp a b =
exp_mult a b 1

O © 00 O L

La variable [r| du code OCaml va jouer le role de [r]dans le code C et grossir en stockant de
plus en plus d’information, pour étre renvoyée a la fin. On appelle un tel parametre de fonction

un accumulateur.

Dans I'exemple précédent, nous sommes repartis d’une boucle pour trouver une version récursive
terminale, mais il est plus simple de réfléchir directement a comment introduire un accumula-

teur : que stocker dedans, et comment 'initialiser.

Regles de bonne conduite Lorsque I'on programme en OCaml, on essaie d’écrire des fonc-
tions récursives terminales des que c’est possible, car elles sont plus efficaces d'un point de
vue mémoire. On passe alors quasi-systématiquement par des fonctions auxiliaires utilisant un

accumulateur, et il y a alors deux possibilités :

— On définit la fonction auxiliaire avant la fonction principale :

1 |let rec fonction_auxiliaire x_1 ... x_n accu_1 . accu_m =
2 e

3 |let fonction_principale x_1 . X_n =

4 fonction_auxiliaire x_1 .xnv_l ... v_m

L’avantage principal est que I'on peut utiliser la fonction auxiliaire dans le reste du code

(en particulier pour tester / débugger).

— On définit la fonction auxiliaire dans la fonction principale :

let fonction_principale x_1 . Xn=

let rec fonction_auxiliaire x_1 ... x_n accu_1 ... accu_m
in
fonction_auxiliaire x_1

Tk W N~

.xnv_1l ... v_m

L’avantage principal est que I’on n’a pas besoin de re-préciser en parametre de la fonction
auxiliaire les parametres de la fonction principale qui restent constant entre les appels.

Par exemple :

(* somme f n = E:Z;g (1) %)
let somme (f: int->int) (n: int)
(* somme_plus (k: int) (r: int) = r4—§:i;§f(ﬂ *)
let rec somme_plus k r =
if k < 0 then r else
somme_plus (k-1) (r + £ (k-1))
in
somme_plus n O

int =

0O Ui W N

La fonction f étant toujours la méme, pas besoin de la passer en parametre de la fonction

auxiliaire, ce qui rend le code plus léger.

Dans les deux cas, il est important de respecter certaines regles.

— Ne jamais appeler la fonction auxiliaire avec le méme nom que la fonction principale suivi
de “_aux”. Si vous cherchez des exos / cours en ligne, vous verrez souvent cette pratique,

mais c’est peu recommandable.

31/336]

MP2I Pierre de Fermat 2025-2026

3. RECURSIVITE

— Autant que possible, trouver un commentaire de documentation adapté pour la fonction
auxiliaire, et pas juste | (x c'est la fonction auxiliaire x) |. Ceci nécessite de réfléchir au
role précis de I'accumulateur, et donc de donner une spécification mathématique de la
fonction auxiliaire.

— Eviter de donner le méme nom aux parametres de la fonction auxiliaire et a ceux de la
fonction principale si 'on code en “imbriqué”.

Les deux premieres regles sont liées, et sont la pour vous forcer a réfléchir au sens de
vos fonctions auxiliaires au dela de “j’utilise un accumulateur”. Par exemple pour la fonction
de lexemple précédent, la spécification est claire : la fonction renvoie la somme
des k premieres valeurs de f, plus z. Il n’est pas toujours évident de trouver un nom adapté,
mais en général, réfléchir au nom revient a réfléchir au sens, et donc a la maniere d’écrire la
fonction. Ces pratiques vous aideront donc sur le long terme a coder efficacement.

Exercice 7

Ecrivons quelques fonctions récursives sur les listes, en cherchant systématiquement une
version récursive terminale.

Q1. Définir une fonction permettant de calculer

la longueur d’une liste.

Q2. Définir une fonction permettant de renverser une liste.

Q3. La fonction ‘map: ('a => 'b)-> 'a list -> 'b list| qui applique une fonction a
tous les éléments d’'une liste.

Q4. Une fonction |fibonacci: int -> int]calculant les termes de la suite de Fibonacci.

Exercice 8

On considere le type suivant représentant des expressions arithmétiques :

1 |type expr =
2 | Int of int
3 | Plus of expr * expr ;;

Q15. Définir une fonction ‘ eval: expr -> int ‘ qui évalue une expression. Essayer de la
rendre récursive terminale. Que remarque-t’on ?

C Arbre d’appel

En OCaml, on peut tracer une fonction pour observer ses valeurs d’entrée et de sortie au
cours des appels récursifs générés par une exécution. Par exemple :

1 leF rec fact n = fact <—— 3
2 if n <= 1 then 1 P e 5
3 else n * fact (n-1 act

) fact <-- 1
4155 fact -—> 1
5 |#trace fact ;; fact —-> 2
6 |fact 3;; fact ——> 6

f <-- x signifie que 'on appelle f sur x, et £ --> x signifie qu’un appel s’est terminé et a
renvoyé .

MP2I Pierre de Fermat 2025-2026 32

3. RECURSIVITE

Un arbre d’appel permet de représenter schématiquement une telle exécution. On suit
la trace de la fonction, en descendant dans l’arbre lors d’un nouvel appel, et en remontant
lorsqu’un appel termine. Par exemple, ’arbre d’appel de | fact 4| est :

Vocabulaire : Les cercles représentant des appels sont nommés noeuds de l'arbre. Le
premier noeud, correspondant a I'appel initial, est appelé racine.

L’arbre d’appel permet d’estimer la complexité d’une fonction : Si chaque appel demande
un nombre constant d’opérations hors appels récursifs, la fonction aura une complexité propor-
tionnelle au nombre de noeuds de ’arbre d’appel.

Dans l'exemple précédent, 'arbre d’appel de a n noeuds pour n € N* et chaque
appel demande un temps constant excepté 'appel récursif : la complexité est en O(n).

Exercice 9

On considere la suite suivante :

Ug = 2
VneNu,.1 = |1—3u,+2u?

On propose la fonction suivante permettant de calculer la suite u :

let rec un =
match n with
| 0 > 2
| _ > if 1 -3 *u (n-1) + 2 *x u (n-1) * u (n-1) > 0 then
1 -3*xu (n-1) + 2 xu (n-1) * u (n-1)
else
-1 -3*xu (n-1) +2 *xu (n-1) * u (n-1))

~N O Ot W N

Dessiner les quelques premiers étages de Parbre d’appel de [u 5]. Estimer le nombre
de noeuds dans I’arbre d’appel de pour n € N, et en déduire la complexité de cette
fonction. Proposer une fonction plus rapide.

D Complexité

L’exemple précédent montre qu’il est possible de déterminer la complexité d'une fonction
récursive en étudiant son arbre d’appel. Une autre méthode tres générale est de trouver une
relation de récurrence vérifiée par la complexité, et de la résoudre.

Exemple 7
Pour la fonction [fact], notons C,, le cotut de I’appel [fact n]. Pour n > 1 on a C,, =

Crn_1 + O(1). Donc, a partir d’'un certain rang ng, pour une certaine constante A > 0,

C,<C,_1+ A Onadonc:

33 MP2I Pierre de Fermat 2025-2026

3. RECURSIVITE

Cho1+ A
Ch1+Ch_s+2A
Chy + (n—ngp)A
Cho + An

La fonction est donc en O(n) : méme cout que 'algorithme avec une boucle.

VARVANI VAN VAN

Exercice 10

De méme, trouver une relation de récurrence pour la fonction de 'exemple précédent,
et retrouver la complexité asymptotique.

On considere I’exponentiation rapide, que 'on peut écrire en OCaml comme suit :

1 | (* calcule a puissance n *)

2 |let rec fast_exp (a : int) (n : int) : int = match n with
3 0 -—>1

4 | _ => if n mod 2 = 0 then fast_exp (a*a) (n/2)

5 else a *x fast_exp (a*xa) (n/2)

On peut étudier la complexité C,, de cette fonction grace a I’équation qu’elle vérifie :

C, = CL%J +0(1)
Etudions pour simplifier la relation suivante :

Co = 1
C, = (7L%J +1

qui ne changera pas le comportement asymptotique. En raisonnant en base 2, on remarque
que I'opération n + | %] consiste a enlever un bit a n. Ainsi, on peut appliquer la relation de
récurrence au plus [log, n| fois : une fois par bit dans n. On obtient alors que C,, = 14+1+4---+1
avec [logyn] 1s, i.e. C), = [logyn].
Ainsi, C,, = O(logn) : on retrouve la complexité logarithmique de l’exponentiation rapide

impérative.

Exercice 11

On propose le code suivant OCaml pour le tri fusion :

1 | (* renvoie deux listes 11 12 de méme taille al preés,

2 contenant les éléments de 1 *)

3 |let rec separer (1: 'a list) : 'a list * 'a list =

4 match 1 with

5 [00 -> 100, [

6 I [x] —> [x], [

7 | x::y::q => let 11, 12 = separer q in x::11, y::12

8

9 | (* Fusionne 11 et 12 deux listes supposées triées par ordre croissant *)
10 |let rec fusion (11: 'a list) (12: 'a 1list) : 'a list =
11 match 11, 12 with

12 | O, _ > 12

13 I _, 0 >11

14 | x1::91, x2::9q2 -> if x1 < x2 then x1 :: fusion gl 12
15 else x2 :: fusion 11 g2

16

17 |let rec tri_fusion (1 : 'a list) : 'a list =

MP2I Pierre de Fermat 2025-2026 34

3. RECURSIVITE

18
19
20

match 1 with
011 xI >1

| _ -> let 11, 12 = separer 1 in fusion (tri_fusion 11) (tri_fusion 12)

35/36]

Q1. Montrer la correction des trois fonctions

Q2. Donner la complexité des fonctions et en fonction de la taille de

leurs arguments.

Q3. En notant C, le nombre d’opérations de sur une liste de taille n,

justifier que C), vérifie la relation de récurrence suivante :
C, = CL%J + C(%] + @(n)
Q4. Etudier la relation suivante simplifiée :

CnZQC% +n

en calculant d’abord Cy pour p entier. On admettra que (C),)nen est croissante. En
conclure la complexité du tri fusion.

Q5. Retrouver cette complexité en étudiant 'arbre d’appel de [tri_fusion]

MP2I Pierre de Fermat 2025-2026

	Premiers programmes
	Éléments de base d'OCaml
	Récursivité

