
TP10 2025-2026

TP10: OCaml: récursivité et types
sommes

Lorsque vous écrivez une fonction OCaml, vous devez la typer, et écrire un commentaire qui
précise la valeur renvoyée par la fonction par rapport aux paramètres, ainsi que les préconditions
/ hypothèses nécessaires. Par exemple :

1 (* true si x divise y, false sinon.

2 x et y doivent être positifs, et y doit être non-nul. *)

3 let divise (x: int) (y: int) : bool =

4 if x <= 0 then failwith "Argument invalide"

5 else y mod x = 0

6
7 (* Nombre d'éléments de l *)

8 let rec taille (l: 'a list) : int =

9 match l with

10 | [] -> 0

11 | _ :: q -> 1 + taille q

Enfin, pour chaque fonction, on donnera un jeu de test. Pour cela, on peut utiliser la fonction
assert: bool -> unit , qui fonctionne comme en C : elle prend en entrée un booléen et arrête le
programme si ce booléen n’est pas true . Par exemple pour tester la fonction taille, on créera
une fonction test_taille: unit -> unit :

1 let test_taille () =

2 assert (taille [] = 0);

3 assert (taille [2; 4; 5; 1; 1] = 5)

On écrira aussi une fonction test: unit -> unit permettant de lancer tous les tests :

1 let test () =

2 test_divise ();

3 test_taille ();

4 print_string "Tous les tests ont réussi\n"

On peut alors lancer les tests dans utop après avoir importé le fichier en tapant simplement
test ();;

ATTENTION : Il ne faut pas mettre de point-virgule à la fin de la dernière
instruction dans une fonction : le point virgule se met ENTRE les instructions ! !

Informatique - MP2I - Lycée Pierre de Fermat 1/12

TP10 2025-2026

Exercice 1: Listes

On rappelle la syntaxe des listes :

• La liste vide s’écrit [] , elle est de type 'a list

• Si E1 est une expression de type 'a et E2 une expression de type 'a list , alors
E1 :: E2 est aussi de type 'a list , et contient E1 comme premier élément, suivi
des éléments de E2.

• On peut utiliser [] et :: dans les motifs (voir la fonction taille plus haut).

Étudions quelques fonctions sur les listes. Tentez de réutiliser au maximum les fonc-
tions que vous définissez dans les suivantes.

Q1. Écrivez une fonction somme: int list -> int renvoyant la somme d’une liste d’en-
tiers.

Q2. Écrivez une fonction recherche: 'a list -> 'a -> bool qui, étant donné L une
liste et x un élément, détermine si x ∈ L.

Q3. Pour deux listes L1 = [x1; ...;xn] et L2 = [y1; ...; ym], la concaténation de L1 et
L2 est L = [x1; . . . ;xn; y1; . . . ; ym]. Écrivez une fonction concatener qui prend en
entrée deux listes L1, et L2 et renvoie leur concaténation. (Indication : on pourra
raisonner par récurrence sur L1)

Q4. Écrivez une fonction multi_concat: 'a list list -> 'a list prenant en entrée
une liste de listes et renvoyant leur concaténation.
Par exemple, multiconcat [[1; 2]; [3]; [4; 5; 6]] = [1; 2; 3; 4; 5; 6] .

Q5. Écrivez une fonction map: ('a -> 'b)-> 'a list -> 'b list prenant en entrée une
liste L, une fonction f , et renvoyant la liste obtenue en appliquant f à chaque
élément de L. Par exemple, map (fun x -> x*x)[2; 3; 4] = [4; 9; 16] .

On s’intéresse maintenant à l’écriture d’une fonction qui renverse l’ordre d’une liste.
On souhaite donc obtenir une fonction rev: 'a list -> 'a list . Nous avons déjà fait
la remarque qu’une liste OCaml se comporte comme une pile. Nous allons donc essayer
d’écrire rev en renversant la liste d’entrée dans une autre. Pour cela, nous allons passer
par une fonction auxiliaire, dont la spécification est :

1 (* Renverse l1 dans l2, et renvoie le résultat.

2 Exemple: rev_concat [1; 2; 3] [4; 5; 6] = [3; 2; 1; 4; 5; 6]*)

3 let rec rev_concat (l1: 'a list) (l2: 'a list) : 'a list = ...

Q6. Implémentez la fonction rev_concat par récurrence sur l1 .

Q7. En déduire la fonction rev: 'a list -> 'a list .

La fonction rev nous a demandé de coder une fonction auxiliaire utilisant un pa-
ramètre additionnel permettant de “stocker le résultat”. On dit que l2 est un accu-
mulateur.

Q8. En utilisant une fonction auxiliaire et un accumulateur, écrivez une fonction
range: int -> int list prenant en entrée n ∈ N et renvoyant la liste [0; . . . ;n−1].

Informatique - MP2I - Lycée Pierre de Fermat 2/12

TP10 2025-2026

Exercice 2: Fonctions classiques sur les listes

Q1. Copiez-collez le code des fonctions taille , recherche , somme et multi_concat .

Q2. Écrivez une fonction string_cat: string list -> string qui renvoie la concaténation
de toutes les châınes de caractères de la liste donnée. On rappelle que l’opérateur
^ permet de concaténer deux strings.

On constate que toutes les fonctions des deux questions précédentes ont des définitions
très proches, et on propose d’étudier une fonction qui permet de les généraliser. Cette
fonction, classique en programmation fonctionnelle, s’appelle fold (ou parfois reduce) :

1 let rec fold (f: 'a -> 'b -> 'b) (l: 'a list) (b: 'b) : 'b = match l with

2 | [] -> b

3 | x::q -> f x (fold f q b)

Q3. Recopiez la fonction fold, et évaluez les expressions suivantes :

1 fold (fun x y -> x^y) ["vive"; " "; "OCaml"; "!!!"] "";;

2 (* les opérateurs sont des fonctions, on peut donc également écrire: *)

3 fold (^) ["vive"; " "; "OCaml"; "!!!"] "";;

4
5 fold (+) [1;2;3;4] 0;;

6 fold (fun x l ->x::l) [1;2;3;4] [];;

fold sert donc à utiliser les éléments d’une liste pour accumuler un résultat à
partir d’un élément de départ b et d’une fonction d’agrégation f . Plus précisément,
fold f [x1;x2;...;xn] a renvoie f(x1, f(x2, . . . f(xn, b) . . .)).

Par exemple, pour fold (+)[1;2;3;4] 0 , le résultat est 1 + (2 + (3 + (4 + 0))) = 10.

Q4. En utilisant fold, donnez une nouvelle définition des fonctions somme , recherche

et multi_concat . A chaque fois, réfléchissez à :

• Quel est le résultat sur une liste vide : cela vous donne b

• Pour une liste x::q , si j’ai déjà le résultat sur q, comment est-ce que je mets
à jour ce résultat avec x : cela vous donne f .

Deux autres fonctions très courantes en OCaml sont map: ('a -> 'b)-> 'a list -> 'b list

(vue plus haut) et filter: 'a list -> ('a -> bool)-> 'a list qui prend en entrée une
liste et une fonction de filtre, et renvoie la liste des éléments qui passent le filtre. Par
exemple :

1 let est_pair (x: int) : bool =

2 x mod 2 = 0

3
4 let l1 = filter est_pair [1;2;3;4;2;3;4] (* vaudra [2;4;2;4] *)

Q5. Définissez filter et map , d’abord directement, puis en utilisant fold

Q6. En utilisant filter, map, fold et la fonction range de l’exercice précédent, écrire

une fonction sum_div: int -> int non-récursive calculant la somme des carrés des
diviseurs d’un entier non nul.

Informatique - MP2I - Lycée Pierre de Fermat 3/12

TP10 2025-2026

Exercice 3: Châınes de caractères

Intéressons nous à la manipulation des strings. Pour accéder au k-ème caractère d’une
string s de longueur n, on utilise la syntaxe s.[k] (avec 0 ≤ k < n). En OCaml,
on peut accéder aux fonctions concernant les strings avec String.bla . Par exemple,

String.length est la fonction qui calcule la longueur d’une string.

Q1. Écrire une fonction list_of_string: string -> char list permettant de décomposer
une string en liste de caractères. On pourra passer par une fonction auxiliaire pre-
nant aussi en entrée un indice permettant d’itérer sur la string.

Documentation Sur la machine virtuelle, le logiciel Zeal contient la documentation
d’OCaml et de sa librairie standard. Vous y trouverez donc les descriptions des fonc-
tions du module String et de tous les autres modules accessibles par défaut. Si vous
n’êtes pas sur la machine virtuelle, vous pouvez trouver la documentation en ligne :
v2.ocaml.org/api.
Notons que la librairie standard contient un module List , dans lequel se trouvent

de nombreuses fonctions utiles sur les listes, dont certaines que l’on a codé dans les
exercices précédents :

• List.length: 'a list -> int pour la longueur d’une liste ;

• List.map: ('a -> 'b)-> 'a list -> 'b list pour appliquer une fonction à une
liste, élément par élément ;

• List.filter: ('a -> bool)-> 'a list -> 'a list pour filtrer les éléments d’une
liste vérifiant un prédicat donné ;

• etc...

Q2. Cherchez la documentation de la fonction String.split_on_char et testez-la.

Nous allons réimplanter cette fonction par nos propres moyens.
On admet que la fonction suivante permet de transformer une liste de caractères en
string :

1 let string_of_list (l: char list) : string =

2 String.of_seq (List.to_seq l)

Q3. Écrire une fonction split: string -> char -> string list permettant de diviser
une string en mots, selon un caractère de séparation. Par exemple :

1 assert (split ',' "toto,tata,tutu" = ["toto"; "tata"; "tutu"]);;

Il pourra être utile d’utiliser une fonction auxiliaire de la forme :

1 let rec split_from_i (s:string) (sep:char) (i:int) (curr:char list) : string

2 list=

3 ...

qui permet de diviser s en liste de strings, à partir de l’indice i, et qui stocke dans
curr les caractères lus depuis la dernière occurrence du séparateur. On signale
également l’existence de la fonction List.rev qui permet de renverser l’ordre
d’une liste.

Informatique - MP2I - Lycée Pierre de Fermat 4/12

https://v2.ocaml.org/api

TP10 2025-2026

Exercice 4: Cartes à jouer

Nous allons utiliser des types sommes pour représenter et manipuler des cartes à jouer.
On rappelle qu’un type somme permet de représenter un ensemble contenant plusieurs
sous-catégories. Par exemple :

1 type couleur = Coeur | Pique | Carreau | Trefle

Cette syntaxe signifie que l’on a un type appelé couleur , contenant 4 valeurs. On
peut utiliser ces valeurs dans des expressions et dans les motifs :

1 let c1 = Pique

2 let t = (Carreau, 2, "bla")

3 let est_rouge (c: couleur) : bool = match c with

4 | Coeur | Carreau -> true (* Coeur ou bien Carreau *)

5 | Pique | Trefle -> false

6 ;;

7 assert (est_rouge Carreau) ;;

Un type somme peut également contenir des valeurs à paramètres. Par exemple :

1 type tete = Valet | Dame | Roi

2
3 type carte =

4 | Nombre of (int * couleur) (* Nombre (2, Coeur) est le 2 de coeur, et ainsi de

suite *)

5 | Tete of (tete*couleur) (* Tete (Valet, Pique) est le valet de pique *)

6 | Joker

7
8 let carte_1 = Tete(Valet, Coeur)

9 let carte_2 = Nombre (9, Pique)

10
11 (* Renvoie la couleur d'une carte *)

12 let couleur_de_carte (ca: carte) : couleur = match ca with

13 | Nombre (_, c) -> c

14 | Tete (_, c) -> c

15 | Joker -> failwith "pas de couleur"

16 ;;

17 assert (couleur_de_carte (Roi Trefle) = Trefle) ;;

Les mots Nombre , ... Roi sont appelés des constructeurs. Un nom de construc-
teur doit commencer par une majuscule, et un nom de type doit commencer par une
minuscule.
Attention, un constructeur n’est pas une fonction, on ne pourrait pas écrire le

code suivant pour créer un 5 de pique :

1 let a = Nombre (* Erreur de syntaxe: Nombre attend un paramètre *)

2 let b = a (5, Pique)

Q1. Recopiez les types couleur, tete, carte .

Q2. Écrivez une fonction string_of_couleur: couleur -> string qui renvoie le nom
d’une couleur sous forme de châıne de caractère

Q3. Écrivez une fonction string_of_carte: carte -> string qui renvoie le nom d’une
carte sous forme de châıne de caractère : ”Dame de pique”, ”10 de coeur”, etc...
Le 1 doit s’appeler “As” !

Informatique - MP2I - Lycée Pierre de Fermat 5/12

TP10 2025-2026

On représente une main ou un deck de cartes par une liste de cartes : carte list .

Q4. Tentez de comparer quelques cartes avec <, <=, =, etc... et proposez une des-
cription précise de l’ordre par défaut d’OCaml.

Q5. Écrivez une fonction compare_carte: carte -> carte -> int qui permet de com-
parer deux cartes selon un ordre plus naturel :

• Les couleurs sont rangées ensembles : tous les coeurs sont plus petits que
tous les carreaux, qui sont plus petits que tous les piques, qui sont plus petits
que tous les trèfles ;

• Au sein d’une couleur, l’ordre est 2, 3, ..., 10, valet, dame, roi, as.

La fonction renverra −1, 0 ou 1 selon si la première carte est inférieure, égale ou
supérieure à la deuxième.

Q6. Écrivez une fonction insert: carte -> carte list -> carte list qui permet d’insérer
une carte au bon endroit dans une main supposée triée.

Q7. Utilisez cette fonction pour écrire une fonction insert_sort: carte list -> carte list

implémentant le tri par insertion et permettant de trier une main de cartes.

Q8. Écrivez une fonction gen_couleur qui prend en entrée une couleur et renvoie la

liste des 13 cartes de cette couleur (dans l’ordre que vous voulez).

Informatique - MP2I - Lycée Pierre de Fermat 6/12

TP10 2025-2026

Exercice 5: La soif

On veut créer un type permettant de représenter les boissons. On propose d’avoir les
boissons suivantes :

• De l’eau ;

• Du jus de fruit (il faut préciser quel fruit) ;

• Du Breizh Cola,qui peut être normal ou light.

Q1. Créer un type type boisson = ... ;; permettant de représenter les boissons.

Q2. Créer une fonction qui calcule le prix au litre d’une boisson. On pose :

• L’eau est gratuite

• Tous les jus coûtent 3¿ le litre, sauf le jus de ramboutan qui coûte 5.30¿ le
litre

• Le Breizh Cola coûte 1¿ le litre

Rien n’empêche un type d’être récursif, c’est à dire d’avoir un constructeur utilisant
le type lui-même. On peut par exemple rajouter au type boisson le cas suivant :

1 type boisson =

2 ...

3 | Cocktail of boisson * boisson * float

On souhaite donner à Cocktail (b1, b2, p) le sens “boisson contenant une propor-

tion p ∈ [0, 1] de boisson b1 et 1− p de boisson b2”.

Q3. Modifier la boisson de calcul de prix pour prendre en compte ce nouveau construc-
teur.

Q4. Créer une fonction shaker: boisson list -> boisson prenant en entrée une liste
non-vide de boissons B1...Bn et faisant un gigantesque cocktail, de la forme :

cocktail(
1

2
, B1, cocktail(

1

2
, B2, cocktail(...cocktail(

1

2
, Bn−1, Bn)...)

On voudrait pouvoir afficher la recette d’un cocktail, sous la forme :

Recette pour 1L:

50 mL Eau

400 mL Jus de raisin

300 mL Breizh Cola

250 mL Jus d’orange

Dans la suite, on appelle boisson de base toute boisson n’étant pas un cocktail.

Q5. Écrire une fonction string_of_boisson calculant le nom d’une boisson de base.

Informatique - MP2I - Lycée Pierre de Fermat 7/12

TP10 2025-2026

Q6. Écrire une fonction ingredients: boisson -> (boisson*float)list permettant de

transformer une boisson en une liste de couples (B, x) où B est une boisson de
base, et x la proportion de cette boisson dans le cocktail. On s’autorisera à avoir
des doublons, par exemple :

1 ingredients (Cocktail(Eau, Cocktail (Breizh, Jus "pomme", 0.4), 0.5));;

2 (* Vaut [(Eau, 0.5); (Breizh, 0.2); (Jus pomme, 0.3)] *)

3
4 ingredients (Cocktail(Eau, Eau, 0.5));;

5 (* Vaut [(Eau, 0.5); (Eau, 0.5)] *)

Indication : on pourra utiliser une fonction auxiliaire ingredients_fraction de si-

gnature boisson -> float -> (boisson*float)list prenant en argument addition-
nel une proportion p indiquant la proportion totale de la boisson. Par exemple :

1 ingredients_fraction (Cocktail(Eau, Cocktail (Breizh true, Jus "pomme", 0.4),

0.5)) 0.7;;

2 (* Vaut [(Eau, 0.35); (Breizh, 0.14); (Jus pomme, 0.21)], chaque proportion a

été multipliée par 0.7 *)

Le module List d’OCaml possède de nombreuses fonctions utiles, notamment une
fonction List.sort: ('a -> 'a -> int)-> 'a list -> 'a list telle que List.sort cmp l

trie la liste l selon la fonction de comparaison cmp (qui doit renvoyer un entier

négatif, nul ou positif selon le résultat de la comparaison). De plus, OCaml possède
une fonction de comparaison native, compare: 'a -> 'a -> int . Comme nous l’avons
vu sur l’exercice précédent, l’ordre natif d’OCaml sur les types somme est de comparer
d’abord les constructeurs, puis ensuite les arguments. Ainsi, si on a une liste de boissons
l: boisson list , alors List.sort compare l est une copie de l où les boissons sont
triées, et donc regroupées par constructeur.

Q7. Écrire une fonction agreg_sum: ('a * float)list -> ('a * float)list qui prend
en entrée une liste de couples, et qui regroupe les couples selon la première compo-
sante, en sommant les deuxième composantes. On supposera que la liste d’entrée
est triée. Par exemple :

1 agreg_sum [("bla", 0.1); ("bla", 0.3); ("truc", 0.4);("truc",0.2)] ;;

2 (* Vaut [("bla", 0.4); ("truc", 0.6)] *)

Indication : on pourra utiliser une fonction auxiliaire ayant deux paramètres
supplémentaires donnant l’élément actuel et la somme actuelle pour cet élément.

Q8. En vous aidant des fonctions précédentes, écrire une fonction recette: boisson -> unit

qui affiche la recette d’une boisson selon le format décrit plus haut.

Informatique - MP2I - Lycée Pierre de Fermat 8/12

TP10 2025-2026

Exercice 6: Tri rapide et tri fusion

Plus tôt dans le TP, nous avons implémenté un algorithme de tri par insertion. On
étudie maintenant deux algorithmes plus performants : le tri rapide et le tri fusion.

Q1. Écrire une fonction est_triee: 'a list -> bool déterminant si son entrée est
triée dans l’ordre croissant.

Commençons par le tri rapide, que nous avons déjà vu en TP en C :

Algorithme 1 : TriRapide

Entrée(s) : L une liste d’éléments
Sortie(s) : L′ liste triée des éléments de L

1 si L est de taille 0 ou 1 alors
2 retourner L

3 p,Q← tête de L, queue de L ;
4 L≤ ← Liste des éléments y ∈ Q tels que y ≤ p ;
5 L> ← Liste des éléments y ∈ Q tels que y > p ;
6 L′

≤ ← TriRapide(L≤);
7 L′

> ← TriRapide(L>);
8 L′ ← la concaténation de L′

≤, [p] et L
′
>;

9 retourner L’

Q2. Écrivez une fonction partition: 'a -> 'a list -> ('a list * 'a list) prenant
en entrée un élément x et une liste L et renvoyant L≤, L> définies comme dans
l’algorithme plus haut.

Q3. Écrivez une fonction tri_rapide: 'a list -> 'a list triant sa liste d’entrée. Don-
nez également un jeu de test pour vérifier votre fonction.

Passons au tri fusion. Ce tri repose sur l’utilisation de la fonction suivante :

1 (* Renvoie une liste triée contenant les éléments de l1 et l2.

2 Préconditions: l1 et l2 sont triées *)

3 let rec fusion (l1: 'a list) (l2: 'a list) = ...

Q4. Implémentez la fonction fusion , puis utilisez la pour implémentez une fonction
tri_fusion: 'a list -> 'a list qui trie son entrée en la divisant en deux listes
de même longueur, en les triant récursivement, puis en fusionnant les listes triées.
Indication : il existe différentes manières de séparer une liste en deux. Si vous
n’avez pas d’inspiration, imaginez que vous distribuez des cartes.

Informatique - MP2I - Lycée Pierre de Fermat 9/12

TP10 2025-2026

Informatique - MP2I - Lycée Pierre de Fermat 10/12

TP10 2025-2026

Exercice 7

Les langages fonctionnels se prêtent bien à l’écriture de petits compilateurs et in-
terpréteurs, car il est assez facile de représenter et de manipuler les arbres syntaxiques.
On propose pour commencer le type suivant pour représenter des expressions simples :

1 type expr =

2 | Const of float (* constante *)

3 | Add of expr * expr (* Add(e1, e2) correspond àe1 + e2 *)

4
5 (*** Exemples: ***)

6 (* représentation de 3.2 + 4 *)

7 let e1 = Add(Const 3.2, Const 4.)

8
9 (* représentation de (1 + 2) + (3 + (4 + 5)) *)

10 let e2 =

11 Add(

12 Add(

13 Const 1.,

14 Const 2.

15),

16 Add(

17 Const 3.,

18 Add(

19 Const 4.,

20 Const 5.

21)

22)

23)

Q1. Écrivez une fonction eval: expr -> float qui évalue une expression.

Q2. Ajoutez un constructeur Mul au type expr , servant à représenter le produit de

deux expressions, et modifiez la fonction eval en conséquence

Nous allons rajouter à nos expressions la possibilité d’avoir des variables. Les listes
de type (string * float)list serviront à représenter un contexte, c’est à dire une
association entre les variables et les entiers :

1 type context = (string * float) list

2
3 (* x -> 2.0, r -> -0.2 *)

4 let c1 = [("x", 2.0); ("r", -0.2)]

Q3. Écrire une fonction get_var: string -> context -> int telle que get_var s l

cherche dans l un couple (s, n) et renvoie l’entier n correspondant.

La fonction précédente existe déjà dans OCaml : List.assoc: 'a -> ('a * 'b)list -> 'b

prend en entrée un élément x et une liste L et renvoie le premier y tel que (x, y) apparâıt
dans x (et lève une erreur s’il n’y en a pas).

Q4. Modifier le type des expressions pour y rajouter le cas | Var of string représentant

les variables. Modifier la fonction eval pour qu’elle prenne également un contexte
en paramètre, et pour qu’elle traite le nouveau cas ajouté au type.

Informatique - MP2I - Lycée Pierre de Fermat 11/12

TP10 2025-2026

On souhaite maintenant augmenter nos expressions avec une construction if-then-
else. Pour cela, nous allons créer un deuxième type, pour les expressions booléennes :

1 type boolexpr =

2 | BConst of bool (* constantes true et false *)

3 | Or of boolexpr * boolexpr (* OU booléen *)

4 | And of boolexpr * boolexpr (* ET booléen *)

5 | Not of boolexpr (* NON booléen *)

6 | Eq of expr * expr (* égalité *)

7 | Leq of expr * expr (* inférieur ou égal *)

On rajoute également le constructeur suivant au type expr :

1 | IFTE of boolexpr * expr * expr (* if b then e1 else e2 *)

Comme les deux types dépendent l’un de l’autre, on doit les définir en utilisant le
mot clé and :

1 type expr =

2 ...

3
4 and boolexpr =

5 ...

De la même manière, nous allons définir des fonctions sur ces deux types qui iront
par paires et dépendront l’une de l’autre, il faudra alors aussi utiliser le mot clé and.
Par exemple, les fonctions suivantes comptent le nombre d’occurrences d’une variable
dans une expression / dans une expression booléenne :

1 let rec var_count (e: expr) (v: string) : int =

2 match e with

3 | Const _ -> 0

4 | Var x -> if x = v then 1 else 0

5 | Add (e1, e2) | Mul (e1, e2) -> var_count e1 v + var_count e2 v

6 | IFTE (b, e1, e2) -> var_count_bool b v + var_count e1 v + var_count e2 v

7
8 and var_count_bool (b: boolexpr) (v: string) : int =

9 match b with

10 | BConst _ -> 0

11 | Not bb -> var_count_vool bb v

12 | And (b1, b2) | Or (b1, b2) -> var_count_bool b1 v + var_count b2 v

13 | Eq (e1, e2) | Leq (e1, e2) -> var_count e1 v + var_count e2 v

Q5. Modifier eval pour qu’elle soit définie en même temps qu’une fonction eval_bool

équivalente.

Q6. Ajouter la possibilité de faire des let in (non récursifs) dans les expressions, en
ajoutant un constructeur Let of string * expr * expr tel que Let (v, e1, e2)

représente l’expression let v = e1 in e2 .

Q7. Plutôt que d’avoir deux types distincts pour les expressions arithmétiques et
booléennes, proposer un type unique expr fusionnant les deux. Expliquer les
difficultés qui surviennent, et proposer d’éventuelles solutions.

Informatique - MP2I - Lycée Pierre de Fermat 12/12

