—
— O © 00 O Ui Wi+~

—_

[\)

[ENEUCR N

TP10 2025-2026

TP10: OCaml: récursivité et types
sommes

Lorsque vous écrivez une fonction OCaml, vous devez la typer, et écrire un commentaire qui
précise la valeur renvoyée par la fonction par rapport aux parametres, ainsi que les préconditions
/ hypotheses nécessaires. Par exemple :

(* true si x divise y, false sinon.

x et y doivent &tre positifs, et y doit &tre non-nul. *)
let divise (x: int) (y: int) : bool =

if x <= 0 then failwith "Argument invalide"

else y mod x = 0

(* Nombre d'éléments de 1 *)

let rec taille (1: 'a list) : int =
match 1 with
| 1 >0
| _ :: g ->1+ taille q

Enfin, pour chaque fonction, on donnera un jeu de test. Pour cela, on peut utiliser la fonction
|assert: bool —> unit |, qui fonctionne comme en C : elle prend en entrée un booléen et arréte le
programme si ce booléen n’est pas [true]. Par exemple pour tester la fonction taille, on créera
une fonction |test_taille: unit -> unit]:

let test_taille () =
assert (taille [] = 0);
assert (taille [2; 4; 5; 1; 1] = 5)

On écrira aussi une fonction [test: unit -> unit| permettant de lancer tous les tests :

let test () =
test_divise ();
test_taille ();
print_string "Tous les tests ont réussi\n"

On peut alors lancer les tests dans utop apres avoir importé le fichier en tapant simplement

test ();;

ATTENTION : Il ne faut pas mettre de point-virgule a la fin de la derniere
instruction dans une fonction : le point virgule se met ENTRE les instructions!!

Informatique - MP2I - Lycée Pierre de Fermat 1

TP10

2025-2026

Exercice 1: Listes

On rappelle la syntaxe des listes :

e La liste vide s’écrit [[1], elle est de type

e Si est une expression de type et une expression de type ['a 1list], alors
E1 :: E2]est ausside type['a list], et contient E1 comme premier élément, suivi

des éléments de E2.
e On peut utiliser et [::] dans les motifs (voir la fonction plus haut).

Etudions quelques fonctions sur les listes. Tentez de réutiliser au maximum les fonc-
tions que vous définissez dans les suivantes.

Q1. Ecrivez une fonction |somme: int list -> int|renvoyant la somme d’une liste d’en-
tiers.

Q2. Ecrivez une fonction [recherche: 'a list -> 'a -> bool| qui, étant donné L une
liste et x un élément, détermine si x € L.

Q3. Pour deux listes Ly = [x1;...;2,] et Ly = [y1;...;Ym], la concaténation de L; et

Ly est L = [x1;...;20;Y1; - - - ; Ym]. Ecrivez une fonction qui prend en

entrée deux listes Ly, et Ly et renvoie leur concaténation. (Indication : on pourra
raisonner par récurrence sur Li)

Q4. Ecrivez une fonction [multi_concat: 'a list list -> 'a list| prenant en entrée
une liste de listes et renvoyant leur concaténation.
Par exemple, |multiconcat [[1; 2]; [3]; [4; 5; 611 = [1; 2; 3; 4; 5; 6] \

Q5. Ecrivez une fonction‘map: (‘a -> 'b)-> 'a list > 'b 1ist‘prenant en entrée une
liste L, une fonction f, et renvoyant la liste obtenue en appliquant f a chaque
élément de L. Par exemple, ‘map (fun x -> x*x)[2; 3; 4] = [4; 9; 16] ‘

On s’intéresse maintenant a I’écriture d’une fonction qui renverse ’ordre d’une liste.
On souhaite donc obtenir une fonction [rev: 'a list -> 'a list]. Nous avons déja fait
la remarque qu’une liste OCaml se comporte comme une pile. Nous allons donc essayer
d’écrire en renversant la liste d’entrée dans une autre. Pour cela, nous allons passer
par une fonction auxiliaire, dont la spécification est :

[\

(* Renverse 11 dans 12, et renvoie le résultat.
Exemple: rev_concat [1; 2; 3] [4; 5; 6] = [3; 2; 1; 4; 5; 6]1%)
let rec rev_concat (11: 'a list) (12: 'a list) : 'a list = ...

Q6. Implémentez la fonction par récurrence sur [11].

Q7. En déduire la fonction [rev: 'a list -> 'a list|.

La fonction nous a demandé de coder une fonction auxiliaire utilisant un pa-
rametre additionnel permettant de “stocker le résultat”. On dit que est un accu-
mulateur.

Q8. En utilisant une fonction auxiliaire et un accumulateur, écrivez une fonction
|range: int -> int list|prenant en entréen € N et renvoyant la liste [0;...;n—1].

Informatique - MP2I - Lycée Pierre de Fermat

TP10 2025-2026

Exercice 2: Fonctions classiques sur les listes

Q1. Copiez-collez le code des fonctions [taille], [recherche |, [somme] et [multi_concat |

Q2. Ecrivez une fOIlCtion‘string_cat: string list —> string‘qui renvoie la concaténation
de toutes les chaines de caracteres de la liste donnée. On rappelle que 'opérateur
[~] permet de concaténer deux strings.
On constate que toutes les fonctions des deux questions précédentes ont des définitions
tres proches, et on propose d’étudier une fonction qui permet de les généraliser. Cette
fonction, classique en programmation fonctionnelle, s’appelle fold (ou parfois reduce) :

1 |let rec fold (f: 'a -> 'b => 'b) (1: 'a 1list) (b: 'b) : 'b = match 1 with
| 1 >0b
3|1 x::q => f x (fold £ q b)

[\

Q3. Recopiez la fonction fold, et évaluez les expressions suivantes :

fold (fun x y -> x7y) ["vive"; " "; "OCaml"; "!tI"] vy
(* les opérateurs sont des fonctions, on peut donc également écrire: *)
fold (") [l!vivel! . n "n. HOCaInlll . n | | | Il] nimn. .

fold (+) [1;2;3;4] 0;;
fold (fun x 1 ->x::1) [1;2;3;4] [1;;

S T W N =

sert donc a utiliser les éléments d’une liste pour accumuler un résultat a
partir d’'un élément de départ b et d’une fonction d’agrégation f. Plus précisément,
‘fold f [x1;x2;...;xn] a‘renxmﬁe f(xl,f(xg,...f(xn,b)...))

Par exemple, pour |fold (+)[1;2;3;4] 0], le résultat est 1+ (2+ (3+ (4+0))) = 10.

Q4. En utilisant fold, donnez une nouvelle définition des fonctions [somme], | recherche

et [multi_concat | A chaque fois, réfléchissez a :

e Quel est le résultat sur une liste vide : cela vous donne b

e Pour une liste [x::q], si j’ai déja le résultat sur ¢, comment est-ce que je mets
a jour ce résultat avec x : cela vous donne f.

Deux autres fonctions tres courantes en OCaml Sont‘map: ('a => 'b)-> 'a list -> 'b list

(vue plus haut) et \filter: 'a list -> ('a -> bool)-> 'a list \ qui prend en entrée une
liste et une fonction de filtre, et renvoie la liste des éléments qui passent le filtre. Par
exemple :

let est_pair (x: int) : bool =
xmod 2 =0

= w N

let 11 = filter est_pair [1;2;3;4;2;3;4] (x vaudra [2;4;2;4] *)

Q5. Définissez et [map), d’abord directement, puis en utilisant

Q6. En utilisant ’ filter, map, fold ‘ et la fonction de 'exercice précédent, écrire
une fonction\ sum_div: int -> int \non—récursive calculant la somme des carrés des
diviseurs d’un entier non nul.

Informatique - MP2I - Lycée Pierre de Fermat 3

TP10

2025-2026

Exercice 3: Chaines de caracteres

Intéressons nous a la manipulation des strings. Pour accéder au k-eme caractere d’une
string s de longueur n, on utilise la syntaxe (avec 0 < k < n). En OCaml,

on peut accéder aux fonctions concernant les strings avec |String.bla| Par exemple,

‘String.length‘ est la fonction qui calcule la longueur d’une string.

Q1. Ecrire une fonction‘list_of_string: string -> char list \permettant de décomposer
une string en liste de caracteres. On pourra passer par une fonction auxiliaire pre-
nant aussi en entrée un indice permettant d’itérer sur la string.

Documentation Sur la machine virtuelle, le logiciel Zeal contient la documentation
d’OCaml et de sa librairie standard. Vous y trouverez donc les descriptions des fonc-
tions du module et de tous les autres modules accessibles par défaut. Si vous
n’eétes pas sur la machine virtuelle, vous pouvez trouver la documentation en ligne :
v2.ocaml.org/api.

Notons que la librairie standard contient un module [List], dans lequel se trouvent
de nombreuses fonctions utiles sur les listes, dont certaines que 'on a codé dans les
exercices précédents :

e |List.length: 'a list -> int|pour la longueur d’une liste;

° ‘List.map: ('a -> 'b)-> 'a list -> 'b 1ist‘ pour appliquer une fonction a une
liste, élément par élément ;

° \List.filter: ('a -> bool)-> 'a list -> 'a list‘ pour filtrer les éléments d'une
liste vérifiant un prédicat donné;

e ctc...

Q2. Cherchez la documentation de la fonction ‘String.split_on_char‘ et testez-la.

Nous allons réimplanter cette fonction par nos propres moyens.
On admet que la fonction suivante permet de transformer une liste de caracteéres en
string :

let string_of_list (1: char list) : string =
String.of_seq (List.to_seq 1)

Q3. Ecrire une fonction ‘ split: string -> char -> string list ‘ permettant de diviser
une string en mots, selon un caractere de séparation. Par exemple :

1 | assert (split ',' "toto,tata,tutu" = ["toto"; "tata"; "tutu"l);;

Il pourra étre utile d’utiliser une fonction auxiliaire de la forme :

1 | let rec split_from_i (s:string) (sep:char) (i:int) (curr:char list) : string
list=

(\}

qui permet de diviser s en liste de strings, a partir de I'indice ¢, et qui stocke dans
les caracteres lus depuis la derniere occurrence du séparateur. On signale
également 1'existence de la fonction qui permet de renverser 'ordre
d’une liste.

Informatique - MP2I - Lycée Pierre de Fermat 4

https://v2.ocaml.org/api

TP10

2025-2026

N OO W

Exercice 4: Cartes a jouer

Nous allons utiliser des types sommes pour représenter et manipuler des cartes a jouer.
On rappelle qu'un type somme permet de représenter un ensemble contenant plusieurs
sous-catégories. Par exemple :

type couleur = Coeur | Pique | Carreau | Trefle

Cette syntaxe signifie que 'on a un type appelé |[couleur], contenant 4 valeurs. On
peut utiliser ces valeurs dans des expressions et dans les motifs :

let cl = Pique

let t = (Carreau, 2, "bla")

let est_rouge (c: couleur) : bool = match c with
| Coeur | Carreau -> true (x Coeur ou bien Carreau *)
| Pique | Trefle -> false

assert (est_rouge Carreau) ;;

Un type somme peut également contenir des valeurs a parametres. Par exemple :

type tete = Valet | Dame | Roi

type carte =
| Nombre of (int * couleur) (* Nombre (2, Coeur) est le 2 de coeur, et ainsi de
suite *)
| Tete of (tetexcouleur) (* Tete (Valet, Pique) est le valet de pique *)
| Joker

let carte_1 = Tete(Valet, Coeur)
let carte_2 Nombre (9, Pique)

(* Renvoie la couleur d'une carte *)

let couleur_de_carte (ca: carte) : couleur = match ca with
| Nombre (_, c) -> c¢
| Tete (_, c) -> ¢
| Joker -> failwith "pas de couleur"

H

assert (couleur_de_carte (Roi Trefle) = Trefle) ;;

Les mots |Nombre], ... [Roi] sont appelés des constructeurs. Un nom de construc-
teur doit commencer par une majuscule, et un nom de type doit commencer par une
minuscule.

Attention, un constructeur n’est pas une fonction, on ne pourrait pas écrire le
code suivant pour créer un 5 de pique :

let a = Nombre (* Erreur de syntaxe: Nombre attend un paramétre *)
let b = a (5, Pique)

Q1. Recopiez les types‘couleur, tete, carteL

Q2. Ecrivez une fonction |string_of_couleur: couleur -> string| qui renvoie le nom
d’une couleur sous forme de chaine de caractere

Q3. Ecrivez une ﬂ)nCtiOIl‘string_of_carte: carte —> string‘cuﬂ.renvoiele nom d’une
carte sous forme de chaine de caractere : "Dame de pique”, 710 de coeur”, etc...
Le 1 doit s’appeler “As” !

Informatique - MP2I - Lycée Pierre de Fermat)

TP10 2025-2026

On représente une main ou un deck de cartes par une liste de cartes : [carte list].

Q4. Tentez de comparer quelques cartes avec <, <=, =, etc... et proposez une des-
cription précise de l'ordre par défaut d’OCaml.

Q5. Ecrivez une fonction ‘Compare_carte: carte -> carte -> int‘ qui permet de com-
parer deux cartes selon un ordre plus naturel :

e Les couleurs sont rangées ensembles : tous les coeurs sont plus petits que
tous les carreaux, qui sont plus petits que tous les piques, qui sont plus petits
que tous les trefles;

e Au sein d’une couleur, 'ordre est 2, 3, ..., 10, valet, dame, roi, as.

La fonction renverra —1,0 ou 1 selon si la premiere carte est inférieure, égale ou
supérieure a la deuxieme.

Q6. Ecrivez une fonction |insert: carte -> carte list -> carte list]|qui permet d’insérer
une carte au bon endroit dans une main supposée triée.

Q7. Utilisez cette fonction pour écrire une fonction |insert_sort: carte list -> carte list|
implémentant le tri par insertion et permettant de trier une main de cartes.

Q8. Ecrivez une fonction qui prend en entrée une couleur et renvoie la
liste des 13 cartes de cette couleur (dans I'ordre que vous voulez).

Informatique - MP2I - Lycée Pierre de Fermat 6

TP10 2025-2026

Exercice 5: La soif

On veut créer un type permettant de représenter les boissons. On propose d’avoir les
boissons suivantes :

e De l'eau;
e Du jus de fruit (il faut préciser quel fruit) ;

e Du Breizh Cola,qui peut étre normal ou light.

Q1. Créer un type ‘type boisson = ... ;; ‘ permettant de représenter les boissons.

Q2. Créer une fonction qui calcule le prix au litre d'une boisson. On pose :

e [’eau est gratuite

e Tous les jus cottent 3€ le litre, sauf le jus de ramboutan qui cotite 5.30€ le
litre

o Le Breizh Cola coute 1€ le litre

Rien n’empéche un type d’étre récursif, c’est a dire d’avoir un constructeur utilisant
le type lui-méme. On peut par exemple rajouter au type boisson le cas suivant :

1 | type boisson =

[\

3 | Cocktail of boisson * boisson * float

On souhaite donner a ‘Cocktail (b1, b2, p) ‘ le sens “boisson contenant une propor-

tion p € [0, 1] de boisson by et 1 — p de boisson by”.

Q3. Modifier la boisson de calcul de prix pour prendre en compte ce nouveau construc-
teur.

Q4. Créer une fonction |shaker: boisson list -> boisson| prenant en entrée une liste
non-vide de boissons Bj...B, et faisant un gigantesque cocktail, de la forme :

1 1 1
cocktail(ﬁ, By, cocktail(§, By, cocktail(...cocktail(ﬁ, B,_1,B,)...)
On voudrait pouvoir afficher la recette d’'un cocktail, sous la forme :

Recette pour 1L:

50 mL Eau

400 mL Jus de raisin
300 mL Breizh Cola
250 mL Jus d’orange

Dans la suite, on appelle boisson de base toute boisson n’étant pas un cocktail.

Q5. Ecrire une fonction ‘string_cf_boisson‘ calculant le nom d’une boisson de base.

Informatique - MP2I - Lycée Pierre de Fermat 7

TP10 2025-2026

Q6. Ecrire une fonction | ingredients: boisson -> (boisson*float)list‘ permettant de

transformer une boisson en une liste de couples (B, z) ou B est une boisson de
base, et z la proportion de cette boisson dans le cocktail. On s’autorisera a avoir
des doublons, par exemple :

ingredients (Cocktail(Eau, Cocktail (Breizh, Jus "pomme", 0.4), 0.5));;
(* Vaut [(Eau, 0.5); (Breizh, 0.2); (Jus pomme, 0.3)] *)

ingredients (Cocktail(Eau, Eau, 0.5));;
(* Vaut [(Eau, 0.5); (Eau, 0.5)] x*)

U W N =

Indication : on pourra utiliser une fonction auxiliaire ’ ingredients_fraction ‘ de si-

gnature\boisson -> float —> (boisson*float)list\prenant en argument addition-
nel une proportion p indiquant la proportion totale de la boisson. Par exemple :

1 | ingredients_fraction (Cocktail(Eau, Cocktail (Breizh true, Jus "pomme", 0.4),
0.5)) 0.7;;

2 | (* Vaut [(Eau, 0.35); (Breizh, 0.14); (Jus pomme, 0.21)], chaque proportion a
été multipliée par 0.7 *)

Le module [List] d’OCaml posséde de nombreuses fonctions utiles, notamment une
fOHCthHJ’List.sort: ('a => 'a -> int)-> 'a list -> 'a list‘teﬂe(lue‘List.sort cmp 1‘
trie la liste selon la fonction de comparaison (qui doit renvoyer un entier
négatif, nul ou positif selon le résultat de la comparaison). De plus, OCaml possede
une fonction de comparaison native, ‘compare: 'a -> 'a -> int ‘ Comme nous ’avons
vu sur 'exercice précédent, ’ordre natif d’OCaml sur les types somme est de comparer
d’abord les constructeurs, puis ensuite les arguments. Ainsi, si on a une liste de boissons
[1: boisson list], alors |List.sort compare 1| est une copie de [1] ol les boissons sont
triées, et donc regroupées par constructeur.

Q7. Ecrire une fonctknl‘agreg_sum: ('a * float)list -> ('a * float)list‘ qui prend
en entrée une liste de couples, et qui regroupe les couples selon la premiere compo-
sante, en sommant les deuxieme composantes. On supposera que la liste d’entrée
est triée. Par exemple :

1 | agreg_sum [("bla", 0.1); ("bla", 0.3); ("truc", 0.4);("truc",0.2)] ;;
2 | (x Vaut [("bla", 0.4); ("truc", 0.6)] *)

Indication : on pourra utiliser une fonction auxiliaire ayant deux parametres
supplémentaires donnant l’élément actuel et la somme actuelle pour cet élément.

Q8. En vous aidant des fonctions précédentes, écrire une fonction [recette: boisson -> unit]
qui affiche la recette d'une boisson selon le format décrit plus haut.

Informatique - MP2I - Lycée Pierre de Fermat 8

TP10 2025-2026

Exercice 6: Tri rapide et tri fusion

Plus tot dans le TP, nous avons implémenté un algorithme de tri par insertion. On
étudie maintenant deux algorithmes plus performants : le tri rapide et le tri fusion.

Q1. Ecrire une fonction |est_triee: 'a list -> bool| déterminant si son entrée est
triée dans 'ordre croissant.

Commencons par le tri rapide, que nous avons déja vu en TP en C :
Algorithme 1 : TriRapide
Entrée(s) : L une liste d’éléments
Sortie(s) : L' liste triée des éléments de L
1 si L est de taille 0 ou 1 alors
2 L retourner L

3 p,Q < téte de L, queue de L ;

4 L. < Liste des éléments y € Q) tels que y < p ;
5 L. < Liste des éléments y € @) tels que y > p ;
6 L <+ TriRapide(L<);

7 L. < TriRapide(L-);

8 L'« la concaténation de L, [p] et LL;

9 retourner L’

Q2. Ecrivez une fonction ‘partition: 'a -=> 'a list -> ('a list * 'a 1ist)‘ prenant
en entrée un élément = et une liste L et renvoyant L<, L. définies comme dans
I’algorithme plus haut.

Q3. Ecrivez une fonCtiOIl‘tri_rapide: 'a list -> 'a list \triant sa liste d’entrée. Don-
nez également un jeu de test pour vérifier votre fonction.

Passons au tri fusion. Ce tri repose sur I'utilisation de la fonction suivante :

1 | (*x Renvoie une liste triée contenant les éléments de 11 et 12.
Préconditions: 11 et 12 sont triées *)
3 | let rec fusion (11: 'a 1list) (12: 'a list) = ...

[\

Q4. Implémentez la fonction [fusion], puis utilisez la pour implémentez une fonction
[tri_fusion: 'a list -> 'a list|qui trie son entrée en la divisant en deux listes
de méme longueur, en les triant récursivement, puis en fusionnant les listes triées.
Indication : il existe différentes maniéres de séparer une liste en deux. Si vous
n’avez pas d’inspiration, imaginez que vous distribuez des cartes.

Informatique - MP2I - Lycée Pierre de Fermat 9

TP10 2025-2026

Informatique - MP2I - Lycée Pierre de Fermat 10

TP10 2025-2026

Exercice 7

Les langages fonctionnels se prétent bien a 1’écriture de petits compilateurs et in-
terpréteurs, car il est assez facile de représenter et de manipuler les arbres syntaxiques.
On propose pour commencer le type suivant pour représenter des expressions simples :

1 | type expr =

2 | Const of float (* constante *)
3 | Add of expr * expr (* Add(el, e2) correspond ael + e2 *)
4

5 | (xx* Exemples: x***)

6 | (x représentation de 3.2 + 4 %)

7 | let el = Add(Const 3.2, Const 4.)
8

9 | (x représentation de (1 + 2) + (3 + (4 + 5)) *)
10 | let e2 =

11 | Add(

12 Add(

13 Const 1.,

14 Const 2.

15),

16 Add(

17 Const 3.,

18 Add(

19 Const 4.,

20 Const 5.

21)

22)

23)

Q1. Ecrivez une fonction ‘eval: expr —> float ‘ qui évalue une expression.

Q2. Ajoutez un constructeur au type [expr], servant a représenter le produit de
deux expressions, et modifiez la fonction en conséquence
Nous allons rajouter a nos expressions la possibilité d’avoir des variables. Les listes

de type ‘ (string * float)llst‘ serviront a représenter un contexte, c’est a dire une
association entre les variables et les entiers :

type context = (string * float) list

(* x => 2.0, r => -0.2 %)
let c1 = [("x", 2.0); ("r", -0.2)]

Q3. Ecrire une fonction |get_var: string -> context -> int| telle que

cherche dans [un couple (s,n) et renvoie l’entier n correspondant.

=W N =

La fonction précédente existe déja dans OCaml:\List.assoc: 'a -> ('a * 'b)list -> 'b\
prend en entrée un élément x et une liste L et renvoie le premier y tel que (z, y) apparait
dans z (et leve une erreur s’il n’y en a pas).

Q4. Modifier le type des expressions pour y rajouter le cas‘ | Var of string ‘ représentant

les variables. Modifier la fonction pour qu’elle prenne également un contexte
en parametre, et pour qu’elle traite le nouveau cas ajouté au type.

Informatique - MP2I - Lycée Pierre de Fermat 11

TP10 2025-2026

On souhaite maintenant augmenter nos expressions avec une construction if-then-
else. Pour cela, nous allons créer un deuxieme type, pour les expressions booléennes :

type boolexpr =
| BConst of bool (* constantes true et false *)
| Or of boolexpr * boolexpr (* OU booléen *)
| And of boolexpr * boolexpr (* ET booléen *)
| Not of boolexpr (* NON booléen *)
| Eq of expr * expr (* égalité *)
| Leq of expr * expr (* inférieur ou égal *)

N OO W N

On rajoute également le constructeur suivant au type expr :

1| | IFTE of boolexpr * expr * expr (* if b then el else e2 *)

Comme les deux types dépendent I'un de 'autre, on doit les définir en utilisant le

mot clé :

1 | type expr =

2

3

4 | and boolexpr =
)

De la méme maniere, nous allons définir des fonctions sur ces deux types qui iront
par paires et dépendront I'une de l'autre, il faudra alors aussi utiliser le mot clé and.
Par exemple, les fonctions suivantes comptent le nombre d’occurrences d’une variable
dans une expression / dans une expression booléenne :

1 | let rec var_count (e: expr) (v: string) : int =

2 match e with

3 | Const _ > 0

4 | Var x => if x = v then 1 else O

5 | Add (el, e2) | Mul (el, e2) -> var_count el v + var_count e2 v

6 | IFTE (b, el, e2) -> var_count_bool b v + var_count el v + var_count e2 v
7

8 | and var_count_bool (b: boolexpr) (v: string) : int =

9 match b with

10 | BConst _ -> O

11 | Not bb -> var_count_vool bb v

12 | And (b1, b2) | Or (b1, b2) —-> var_count_bool bl v + var_count b2 v
13 | Eq (el, e2) | Leq (el, e2) -> var_count el v + var_count e2 v

Q5. Modifier pour qu’elle soit définie en méme temps qu’une fonction

équivalente.

Q6. Ajouter la possibilité de faire des (non récursifs) dans les expressions, en
ajoutant un constructeur ‘Let of string * expr * expr‘ tel que ‘Let (v, el, e2)\

représente 'expression [let v = el in e2]|.

Q7. Plutot que d’avoir deux types distincts pour les expressions arithmétiques et
booléennes, proposer un type unique fusionnant les deux. Expliquer les
difficultés qui surviennent, et proposer d’éventuelles solutions.

Informatique - MP2I - Lycée Pierre de Fermat 12

