
Éléments de base d’OCaml
Aide-mémoire

MP2I Lycée Pierre de Fermat

Pour faire des commentaires en OCaml, on les entoure par (* *) . Par exemple :

1 (* produit de x et y *)

2 let mul x y = x * y;;

Les types de base sont int, float, bool, char, string, unit.
Les opérations sur ces types sont presque les même qu’en C. Le non booléen se note not et les

opérateurs flottants nécessitent un point : +. au lieu de + , etc...

Type t Opérateurs binaires pour t Opérateurs unaires
pour t

Type de l’expression
composée

int + , - , * , / , mod - int

float +. , -. , *. , /. , ** (puissance) -. float

Tous > , >= , = , < , <= , <> (“différent
de”)

bool

bool && , || not bool

char

string ^ (concaténation) string

On peut ajouter une variable au contexte global avec let x = ... ;; et ajouter une variable dans
un contexte local avec let x = ... in ...

On peut définir des fonctions avec la syntaxe suivante :

1 let f x1 x2 ... xn =

2 ...

Le type d’une telle fonction est t1 -> t2 -> ... -> tn -> t , avec t1, ... tn les types attendus pour
les paramètres de la fonction, et t le type de la valeur renvoyée. On peut comprendre ça de plusieurs
manières :

— La fonction prend en entrée un seul argument de type t1, et renvoie une fonction de type
t2 -> ... -> tn -> t

— La fonction prend en entrée deux arguments de types t1 et t2, et renvoie une fonction de type
t3 -> ... -> tn -> t

— ...

— La fonction prend en entrée n arguments de types t1, ..., tn et renvoie une valeur de type t.

Tous ces points de vues sont équivalents, mais le premier est le plus proche de la manière dont OCaml
représente f en interne.
On applique une fonction avec :

1 f e1 e2 ... ek

où e1, e2, ... ek sont des expressions ayant des types compatibles avec la signature de la fonction f .

Si k < n alors c’est une application partielle, et on obtient une fonction de type t(k+1)-> ... -> tn -> t ,
prenant donc n− k arguments.
Les parenthèses servent à encadrer les sous-expressions et pas à appliquer les fonctions.

1

Voici un exemple de programme mettant en oeuvre ces différentes notions :

1 let x = 3;;

2 let y = 5;;

3 let z = 3 * 5 ;;

4
5 (* somme de x et y *)

6 let sum x y = x + y;;

7 let t = sum 1 2 ;; (* vaut 3 *)

8
9 (* FONCTIONS D'ORDRE SUPERIEUR *)

10
11 (* renvoie une approximation de la dérivée de f *)

12 let derivee f = fun x -> (f (x +. 0.0001) -. f x) /. 0.0001;;

13 (* on pourrait aussi écrire let derivee f x = (f (x +. 0.0001) -. f x) /. 0.0001 *)

14
15 let carre x = x ** 2.0 ;;

16 let derivee_carre = derivee carre ;;

17 derivee_carre 3.0;; (* affiche environ 6, logique car d/dx (x^2) = 2x *)

18
19
20 (* composée de f et g, i.e. une fonction h

21 telle que h(x) = f(g(x)) *)

22 let composition f g =

23 fun x -> f (g x);;

24 (* on pourrait aussi écrire let composition f g x = f (g x) *)

25
26 (* double de x *)

27 let double x = 2*x;;

28
29 let u = composition double int_of_string ;;

30 let a = u "12";; (* vaut 24 *)

31
32 let quadrupler = composition double double;;

33 let b = quadrupler 5;; (* vaut 20 *)

Quiz Pour chacune des expressions suivantes, prédire son type et sa valeur :

1 (* Q1 *)

2 let g x = 2*x in

3 let f x = g x + 1 in

4 f 5 + f 3;;

5
6 (* Q2 *)

7 let double x = 2*x in

8 let triple x = 3*x in

9 double (triple 5);;

10
11 (* Q3 *)

12 let s = "bonjour " in

13 let saluer x = s ^ x ^ " !!" in

14 let s = "salut " in

15 saluer "Jérémy";;

16
17 (* Q4 *)

18 let f x y z = (x z) (y z) in

19 let g x = let x = x - 1 in x * x in

20 let h x = fun y -> let x = y in x+1 in

21 f h g 3;;

22
23 (* Q5 *)

24 let u f (x, y) = f x y in

25 let g = u (fun x -> (fun y -> x y)) in

26 g ((fun a -> a+3), 5);;

2

