
TP9 2025-2026

TP9: Premiers programmes OCaml

Fichiers sources OCaml

L’extension des fichiers OCaml est .ml. Lorsque vous écrivez du code dans un fichier OCaml
bla.ml, vous pouvez le compiler avec ocamlc bla.ml -o nom executable. Il n’y a pas de
fonction main en OCaml, le code est exécuté dans l’ordre où il est écrit.
Notons que dans les fichiers sources OCaml, il n’y a pas besoin de terminer let let par des
;; . Il faut néanmoins utiliser les ;; comme délimiteur lorsque l’on veut écrire des expressions
seules :

1 let ajouter x y = x + y

2 let echanger (x, y) = (y, x);; (* ;; avant l'expression *)

3 print_int (ajouter 2 3);; (* ;; après l'expression *)

4 let a = echanger (3, 5)

On peut aussi importer des fichiers .ml dans l’interpréteur utop avec la directive #use . Par
exemple, si l’on a écrit les 4 lignes précédentes dans un fichier bla.ml , alors dans utop on
pourra taper :

1 #use "bla.ml" ;;

2 let b = echanger a;;

La première ligne va exécuter tout le code de bla.ml, et donc rajouter les deux fonctions
ajouter et echanger au contexte global, ainsi que a, ce qui fait que la deuxième ligne fonc-
tionne bien.

Exercice 1

Écrivez les réponses pour cet exercice dans un fichier “exercice1.ml”.

Q1. Écrivez les fonctions suivantes (veillez à bien respecter les types demandés) :

a) Une fonction double: int -> int renvoyant le double de son entrée

b) Deux fonctions first et second prenant en entrée un tuple de type 'a * 'b

et renvoyant respectivement la première et la deuxième composante.

c) Une fonction somme3: float * float * float -> float qui ajoute les trois
composantes du tuple donné en entrée.

d) Une fonction est_pair; int -> bool déterminant si un entier est pair. En

OCaml, l’opérateur de modulo se note mod (par exemple : 10 mod 3 ).

e) Une fonction divise: int -> int -> bool qui détermine si sa première entrée
est un diviseur de sa deuxième entrée.

Q2. Taper fst et snd : déterminer ce que font ces fonctions, et les recoder.

Informatique - MP2I - Lycée Pierre de Fermat 1/6



TP9 2025-2026

Q3. Peut-on écrire divise 2 ? Que représente cette expression ?

Q4. Écrire une fonction ajouteur: int -> int -> int telle que ajouteur k est une
fonction ajoutant k à son entrée.

Q5. Écrire une fonction est_racine: ('a -> int)-> 'a -> bool prenant en entrée une
fonction f et un élément x, déterminant si f(x) = 0.

Q6. Écrire la fonction identité id telle que id x vaut x pour tout x . Quel est le
type de cette fonction ? Que veut-il dire ?

Q7. Écrire une fonction composee: ('a -> 'b)-> ('c -> 'a)-> ('c -> 'b) prenant en
entrée deux fonctions f et g et renvoyant leur composée f ◦ g.

Exercice 2

Étudions deux éléments importants de la syntaxe du OCaml : le if-then-else et le match-
with.
OCaml possède une syntaxe conditionnelle : le if-then-else. La syntaxe est la suivante :

1 if b then e1 else e2

où :

• b est une expression de type bool

• e1 et e2 sont des expressions de même type

Par exemple :

1 let a =

2 if 3 = 5 then "lapin"

3 else "hibou"

4 (* [résultat] a: string = "hibou" *)

5
6 let valeur_absolue x =

7 if x < 0 then -x else x

Q1. Écrivez une fonction n_roots: (float * float * float)-> int qui prend en entrée
un triplet (a, b, c) et calcule le nombre de racines réelles distinctes du polynôme
aX2 + bX + c.

Q2. Écrivez une fonction nom_chiffre: int -> string qui prend en entrée un entier n
et :

• si n est un chiffre entre 2 et 5 inclus, renvoie son nom en toutes lettres
(“trois” pour n = 3 par exemple)

• sinon, renvoie la châıne vide “”.

On veut écrire cette fonction de manière plus concise. En OCaml, il existe une
généralisation du if-else appelée le match with, ou pattern matching. Pour la fonc-
tion précédente, on peut écrire en OCaml :

1 let nom_chiffre n = match n with

2 | 2 -> "deux"

3 | 3 -> "trois"

4 | 4 -> "quatre"

5 | 5 -> "cinq"

6 | _ -> "" (* _ veut dire "Tous les cas" *)

Informatique - MP2I - Lycée Pierre de Fermat 2/6



TP9 2025-2026

Pour évaluer un match with, on évalue l’expression à matcher (ici, n lors de l’appel
de la fonction), et on compare avec chaque motif possible : 2, 3, 4, 5, . Dès que l’on en
trouve un qui correspond, on évalue l’expression associée. Par exemple, si l’on appelle
nom_chiffre avec n = 4, on va comparer 4 avec 2, puis avec 3, puis avec 4. On renverra
donc “quatre”. Le motif _ est un attrape-tout : toutes les valeurs lui correspondront.

Cette syntaxe est particulièrement puissante. Voyons un exemple plus poussé :

Q3. Lisez le code suivant et tentez de deviner ce qu’il affiche. La fonction print_int: int -> unit

sert à afficher un entier, et print_newline: unit -> unit affiche un retour à la
ligne. Le point virgule simple sert ici à exécuter plusieurs print d’affilées.

1 let f x y = match (x-1, y) with

2 | (0, 0) -> 0

3 | (0, _) -> y + 1

4 | (z, 0) -> z + 100

5 | _ -> x * y

6 ;;

7
8 print_int (f 3 5); print_newline ();;

9 print_int (f 1 0); print_newline ();;

10 print_int (f 1 3); print_newline ();;

11 print_int (f 6 0); print_newline ();;

Q4. Recopiez le code précédent pour vérifier vos suppositions

Q5. On veut écrire une fonction prenant en entrée deux entiers x et y et qui :

• Si x vaut ±y, renvoie 0

• Si x ∈ {y + 1, y − 1}, renvoie (x+ y)2 + 1

• Si x+ y ∈ {1,−1}, renvoie (x− y)2 − 1

• Sinon, renvoie x ∗ y

Complétez le code suivant pour implémenter la fonction décrite :

1 let g x y = match (x-y, x+y) with

2 | 0, _ -> 0

3 | _, 0 ->

4 | 1, _ ->

5 | (* A COMPLETER *)

6 | (* A COMPLETER *)

7 | (* A COMPLETER *)

8 | _ -> (* A COMPLETER *)

Testez sur quelques exemples pour vérifier.

Lors de l’évaluation d’un match with , les différents motifs sont testés dans l’ordre de
haut en bas. Essayez d’exploiter ce comportement pour répondre à la question suivante.

Q6. Écrire une fonction prenant en entrée un entier n et renvoyant :

• Si n est multiple de 3, ”ga”

• Si n est multiple de 5 mais pas de 3, ”bu”

• Si n est multiple d’aucun des deux, n sous forme de string.

Informatique - MP2I - Lycée Pierre de Fermat 3/6



TP9 2025-2026

Exercice 3

Le type unit n’a qu’une seule valeur : () . Il sert à représenter le type des fonctions
qui ne “renvoient rien mais font quelque chose”. Par exemple, les fonctions suivantes
prédéfinies en OCaml servent à afficher des valeurs de différents types :

1 print_int;;

2 print_float;;

3 print_string;;

4 print_newline;;

Q1. Vérifiez le type de ces fonctions, et utilisez les pour afficher un entier, un flottant,
une châıne de caractère, et un retour à ligne.

Le type unit possède une syntaxe particulière : le point-virgule “ ;” permet d’en-
châıner plusieurs expressions de type unit :

1 print_int 5 ; print_string " bonjour " ; print_float 9.8 ; print_newline ()

Q2. Tapez l’expression précédente. Quel est son type ?

“ ;” n’est ni une fonction ni un opérateur, mais on peut informellement le voir comme
un opérateur binaire sur les unit . On peut donc voir une expression de type unit
comme une instruction impérative, et le point-virgule sert à exécuter deux instructions
en séquence.

Q3. Créez une fonction print_retour: string -> unit qui prend en entrée un string
s et affiche s, suivi d’un retour à la ligne.

Remarque 1. La dernière fonction existe en OCaml : elle s’appelle print_endline: string -> unit !

Remarque 2. En Ocaml, lorsque l’on écrit if a then b else () , autrement dit si
l’on veut effectuer une commande b de type unit si une condition a booléenne est
vérifiée, et ne rien faire sinon, on peut ne pas écrire le else :

1 let affiche_si_pair x =

2 if x mod 2 = 0 then print_int x;;

En revanche ça ne marche pas pour les autres types, ce qui est logique : il serait
impossible de donner un type à 1 + (if b then 5);;

Q4. Créez une fonction print_pair: int -> unit qui prend en entrée un entier et

l’affiche si et seulement si il est pair (et ne fait rien sinon).

Q5. Créez une fonction print_pairs: (int*int*int)-> unit qui prend en entrée un
triplet d’entiers, et affiche uniquement ceux qui sont pairs.

On peut aussi utiliser le point virgule pour effectuer une commande avant de calculer
une valeur :

1 let x = 5 ;;

2 let y =

3 print_int x;

4 print_newline ();

5 x + 3;;

6 (* y vaut 8, et l'exécution a affiché 3 suivi d'un retour ligne *)

Informatique - MP2I - Lycée Pierre de Fermat 4/6



TP9 2025-2026

Récursivité

En OCaml, l’outil principal de programmation est la récursivité, c’est à dire le fait qu’une
fonction peut s’appeler elle-même.

Prenons la fonction factorielle. On a vu en C comment la calculer de manière impérative,
avec une boucle for. En OCaml, pour écrire la fonction factorielle, il faudra trouver une relation
de récursivité permettant de définir la factorielle. On remarque :

factorielle(0) = 1
factorielle(n) = n× factorielle(n− 1) pour n > 0

Ces formules permettent de définir récursivement ce qu’est la factorielle d’un entier. En
OCaml, on voudrait donc écrire :

1 let factorielle n = match n with

2 | 0 -> 1

3 | _ -> n * factorielle (n-1)

Cette expression n’est pas acceptée par OCaml, car il faut spécifier que la fonction est
récursive. Pour cela on utilise le mot clé let rec au lieu de let :

1 let rec factorielle n =

2 if n = 0 then 1

3 else n * factorielle (n-1)

4 ;;

5 print_int (factorielle 5); print_newline () ;;

Remarquons que si n < 0, cette fonction va s’appeler à l’infini. En effet, on n’est sensé calculer
la factorielle que pour les entiers positifs. La fonction failwith en OCaml permet de renvoyer
un message d’erreur et d’arrêter le programme. Par exemple, pour la factorielle :

1 let rec factorielle n =

2 if n < 0 then failwith "Factorielle d'un entier négatif"

3 else if n = 0 then 1

4 else n * factorielle (n-1)

Si l’on évalue factorielle (-3) , ocaml affichera le message d’erreur :

Exception: Failure "Factorielle d’un entier négatif".

La programmation en OCaml va donc souvent consister à trouver des définitions récursives
pour les objets et les fonctions que l’on manipule.

Exemple 1. On remarque que pour x ∈ N, on a :

x× 0 = 0
x× y = x× (y − 1) + x pour y > 0

On peut en déduit la fonction suivante (très lente) qui calcule le produit de deux entiers :

1 let rec produit x y =

2 match y with

3 | 0 -> 0

4 | _ -> produit x (y-1) + x

Informatique - MP2I - Lycée Pierre de Fermat 5/6



TP9 2025-2026

Exercice 4

Trouver une définition récursive des fonctions suivantes, puis les implémenter en OCaml.
Commencez par réfléchir aux cas de base, c’est à dire aux entrées pour lesquelles la
fonction peut répondre immédiatement.

Q1. puiss: float -> int -> float qui calcule de manière näıve la puissance d’un flot-
tant par un entier.

Q2. reste: int -> int -> int qui calcule le reste de la division euclidienne d’un entier
a par un autre b, sans utiliser mod . On supposera a ≥ 0 et b > 0.

Q3. pgcd: int -> int -> int qui calcule le PGCD de deux entiers avec l’algorithme
d’Euclide

Q4. puiss_rapide: float -> int -> float qui calcule de manière rapide la puissance
d’un entier par un autre

Q5. div_eucl: int -> int -> (int * int) qui calcule le couple (quotient, reste) de la
division euclidenne d’un entier a par un autre entier b, sans utiliser les opérateurs
/ et mod . On supposera a ≥ 0 et b > 0.

Q6. decomp: int -> int -> unit telle que decomp b x décompose x en base b et affiche
les chiffres un par un.

Q7. (Difficile) a_racine: (int -> int)-> bool telle que a_racine f renvoie true si
f admet une racine dans Z, et boucle à l’infini sinon. On pourra passer par une
fonction auxiliaire récursive prenant plus de paramètres en entrée.

Informatique - MP2I - Lycée Pierre de Fermat 6/6


