=W N

TP9 2025-2026

TP9: Premiers programmes OCaml

Fichiers sources OCaml

L’extension des fichiers OCaml est .ml. Lorsque vous écrivez du code dans un fichier OCaml
bla.ml, vous pouvez le compiler avec ocamlc bla.ml -o nom executable. Il n’y a pas de
fonction en OCaml, le code est exécuté dans l'ordre ou il est écrit.

Notons que dans les fichiers sources OCaml, il n’y a pas besoin de terminer let par des
[5;] Il faut néanmoins utiliser les [;;] comme délimiteur lorsque 'on veut écrire des expressions
seules :

let ajouter x y =x +y
let echanger (x, y) = (y, x);; (x ;; avant 1'expression *)
print_int (ajouter 2 3);; (x ;; aprés 1l'expression *)

let a = echanger (3, 5)

On peut aussi importer des fichiers .m1 dans l'interpréteur utop avec la directive [#use]. Par
exemple, si 'on a écrit les 4 lignes précédentes dans un fichier [bla.ml], alors dans utop on
pourra taper :

#use "bla.ml" ;;
let b = echanger a;;

La premiere ligne va exécuter tout le code de bla.ml, et donc rajouter les deux fonctions
|ajouter | et |echanger | au contexte global, ainsi que a, ce qui fait que la deuxi¢me ligne fonc-
tionne bien.

Exercice 1

Ecrivez les réponses pour cet exercice dans un fichier “exercicel.ml”.

Q1. Ecrivez les fonctions suivantes (veillez & bien respecter les types demandés) :

a) Une fonction [double: int -> int]renvoyant le double de son entrée

b) Deux fonctions[first et [second]|prenant en entrée un tuple de type
et renvoyant respectivement la premiere et la deuxieme composante.

c) Une fonction |somme3: float * float * float -> float| qui ajoute les trois
composantes du tuple donné en entrée.

d) Une fonction ‘est_pair ; int -> bool‘ déterminant si un entier est pair. En

OCaml, 'opérateur de modulo se note (par exemple : [10 mod 3]).

e) Une fonction[divise: int -> int -> bool |qui détermine si sa premiére entrée
est un diviseur de sa deuxieme entrée.

Q2. Taper et . déterminer ce que font ces fonctions, et les recoder.

Informatique - MP2I - Lycée Pierre de Fermat 1 /@

TP9

2025-2026

Q3. Peut-on écrire [divise 2|7 Que représente cette expression ?
Q4. Ecrire une fonction [ajouteur: int -> int -> int| telle que est une

fonction ajoutant k£ a son entrée.

Q5. Ecrire une fonction\est_racine: ('a -> int)-> 'a -> bool\prenant en entrée une
fonction f et un élément x, déterminant si f(z) = 0.

Q6. Ecrire la fonction identité telle que vaut [x] pour tout [x]. Quel est le

type de cette fonction ? Que veut-il dire?

Q7. Ecrire une fonction ‘composee: (‘a -> '"b)-> ('c => 'a)-> ('c => 'b) ‘ prenant en
entrée deux fonctions f et g et renvoyant leur composée f o g.

N OO W N

S T W N =

Informatique - MP2I - Lycée Pierre de Fermat

Exercice 2

Etudions deux éléments importants de la syntaxe du OCaml : le if-then-else et le match-
with.
OCaml possede une syntaxe conditionnelle : le ¢f-then-else. La syntaxe est la suivante :

if b then el else e2

N

ou :

e [b] est une expression de type

. et sont des expressions de méme type

Par exemple :

let a =
if 3 = 5 then "lapin"
else "hibou"
(* [résultat] a: string = "hibou" *)

let valeur_absolue x =
if x < 0 then -x else x

Q1. Ecrivez une fonction\n_roots: (float * float * float)-> int\qui prend en entrée
un triplet (a, b, c) et calcule le nombre de racines réelles distinctes du polynome
aX? +bX +c.

Q2. Ecrivez une fonction ‘nom_chiffre: int -> string‘ qui prend en entrée un entier n
et :

e si n est un chiffre entre 2 et 5 inclus, renvoie son nom en toutes lettres
(“trois” pour n = 3 par exemple)

(124

e sinon, renvoie la chaine vide

On veut écrire cette fonction de maniere plus concise. En OCaml, il existe une
généralisation du if-else appelée le match with, ou pattern matching. Pour la fonc-
tion précédente, on peut écrire en OCaml :

let nom_chiffre n = match n with
| 2 => "deux"
| 3 => "trois"
| 4 -> "quatre"
| 5 -> "cing"

| => "" (x _ veut dire "Tous les cas" *)

TP9 2025-2026

Pour évaluer un match with, on évalue 1'expression a matcher (ici, n lors de 'appel
de la fonction), et on compare avec chaque motif possible : 2, 3, 4, 5, _. Dés que 1'on en
trouve un qui correspond, on évalue I'expression associée. Par exemple, si 'on appelle

avec n = 4, on va comparer 4 avec 2, puis avec 3, puis avec 4. On renverra
donc “quatre”. Le motif [est un attrape-tout : toutes les valeurs lui correspondront.

Cette syntaxe est particulierement puissante. Voyons un exemple plus poussé :

Q3. Lisez le code suivant et tentez de deviner ce qu’il affiche. La fonction ’ print_int: int -> unit

sert a afficher un entier, et ’print_newline: unit -> unit‘ affiche un retour a la
ligne. Le point virgule simple sert ici a exécuter plusieurs print d’affilées.

let f x y = match (x-1, y) with
| (0, 0) >0
| (0, J) >y +1
| (z, 0) -> z + 100

| -> x *xy

EI)

print_int (£ 3 5); print_newline ();;
print_int (£ 1 0); print_newline ();;
print_int (f 1 3); print_newline ();;
print_int (£ 6 0); print_newline ();;

— O © 00O Uik Wi =

—

E®)
=~

. Recopiez le code précédent pour vérifier vos suppositions

o
ot

. On veut écrire une fonction prenant en entrée deux entiers x et y et qui :

e Si x vaut £y, renvoie 0

e Size{y+1,y— 1}, renvoie (z +y)* + 1
e Siz+ye{l,—1}, renvoie (z —y)* — 1

e Sinon, renvoie x *x y

Complétez le code suivant pour implémenter la fonction décrite :

let g x y = match (x-y, x+y) with
| 0, _ >0
| ., 0 >
| 1, _ -

| (*x A COMPLETER *)

| (x A COMPLETER *)

| A COMPLETER *)

I -> (* A COMPLETER *)

O N O T W N+

Testez sur quelques exemples pour vérifier.

Lors de I'évaluation d’un [match with], les différents motifs sont testés dans 1'ordre de
haut en bas. Essayez d’exploiter ce comportement pour répondre a la question suivante.
Q6. Ecrire une fonction prenant en entrée un entier n et renvoyant :

e Sin est multiple de 3, "ga”
e Si n est multiple de 5 mais pas de 3, "bu”
e Si n est multiple d’aucun des deux, n sous forme de string.

Informatique - MP2I - Lycée Pierre de Fermat 3 /@

TP9 2025-2026

Exercice 3

Le type n’a qu'une seule valeur : . Il sert a représenter le type des fonctions
qui ne “renvoient rien mais font quelque chose”. Par exemple, les fonctions suivantes
prédéfinies en OCaml servent a afficher des valeurs de différents types :

1 | print_int;;
2 | print_float;;
3 | print_string;;
4 | print_newline;;
Q1. Vérifiez le type de ces fonctions, et utilisez les pour afficher un entier, un flottant,
une chaine de caractere, et un retour a ligne.
Le type unit possede une syntaxe particuliere : le point-virgule “;” permet d’en-
chainer plusieurs expressions de type unit :
1 | print_int 5 ; print_string " bonjour " ; print_float 9.8 ; print_newline ()

Q2. Tapez 'expression précédente. Quel est son type?

“:” n’est ni une fonction ni un opérateur, mais on peut informellement le voir comme
un opérateur binaire sur les [unit]. On peut donc voir une expression de type unit
comme une instruction impérative, et le point-virgule sert a exécuter deux instructions

en séquence.

Q3. Créez une fonction |print_retour: string -> unit| qui prend en entrée un string
s et affiche s, suivi d’un retour a la ligne.

Remarque 1. La derniere fonction existe en OCaml : elle s’appelle ‘ print_endline: string -> unit |!

Remarque 2. En Ocaml, lorsque 1'on écrit \if a then b else () \, autrement dit si
l'on veut effectuer une commande [b] de type [unit] si une condition [a] booléenne est
vérifiée, et ne rien faire sinon, on peut ne pas écrire le :

1 | let affiche_si_pair x =
2 if x mod 2 = 0 then print_int x;;

En revanche ca ne marche pas pour les autres types, ce qui est logique : il serait
impossible de donner un type a \ 1 + (if b then 5);; \

Q4. Créez une fonction |print_pair: int -> unit| qui prend en entrée un entier et
'affiche si et seulement si il est pair (et ne fait rien sinon).

Q5. Créez une fonction ’print_pairs: (int*int*int)-> unit‘ qui prend en entrée un
triplet d’entiers, et affiche uniquement ceux qui sont pairs.

On peut aussi utiliser le point virgule pour effectuer une commande avant de calculer

une valeur :
let x = 5 ;;
let y =

print_int x;
print_newline ();
x + 353
(x y vaut 8, et 1l'exécution a affiché 3 suivi d'un retour ligne *)

S T W N =

Informatique - MP2I - Lycée Pierre de Fermat 4 /@

\]

Uk W N~

=W N

W N

TP9 2025-2026

Récursivité

En OCaml, I'outil principal de programmation est la récursivité, c’est a dire le fait qu’une
fonction peut s’appeler elle-méme.

Prenons la fonction factorielle. On a vu en C comment la calculer de maniere impérative,
avec une boucle for. En OCaml, pour écrire la fonction factorielle, il faudra trouver une relation
de récursivité permettant de définir la factorielle. On remarque :

factorielle(0) = 1
factorielle(n) = n x factorielle(n —1) pour n >0

Ces formules permettent de définir récursivement ce qu’est la factorielle d'un entier. En
OCaml, on voudrait donc écrire :

let factorielle n = match n with
| 0 > 1
| _ -> n *x factorielle (n-1)

Cette expression n’est pas acceptée par OCaml, car il faut spécifier que la fonction est

récursive. Pour cela on utilise le mot clé au lieu de :

let rec factorielle n =
if n = 0 then 1
else n * factorielle (n-1)

print_int (factorielle 5); print_newline () ;;

Remarquons que si n < 0, cette fonction va s’appeler a I'infini. En effet, on n’est sensé calculer
la factorielle que pour les entiers positifs. La fonction en OCaml permet de renvoyer
un message d’erreur et d’arréter le programme. Par exemple, pour la factorielle :

let rec factorielle n =
if n < 0 then failwith "Factorielle d'un entier négatif"
else if n = 0 then 1
else n * factorielle (n-1)

Si I'on évalue \factorielle (-3) \, ocaml affichera le message d’erreur :

Exception: Failure "Factorielle d’un entier négatif".

La programmation en OCaml va donc souvent consister a trouver des définitions récursives
pour les objets et les fonctions que I'on manipule.

Exemple 1. On remarque que pour x € N, on a :

rx0 = 0
rxy = zx(y—1)+x poury >0

On peut en déduit la fonction suivante (trés lente) qui calcule le produit de deux entiers :

let rec produit x y =
match y with
| 0 ->0
| _ —> produit x (y-1) + x

Informatique - MP2I - Lycée Pierre de Fermat 5 /@

TP9 2025-2026

Exercice 4

Trouver une définition récursive des fonctions suivantes, puis les implémenter en OCaml.
Commencez par réfléchir aux cas de base, c’est a dire aux entrées pour lesquelles la
fonction peut répondre immédiatement.

Q1. ‘puiss: float -> int -> float ‘ qui calcule de maniere naive la puissance d'un flot-
tant par un entier.

Q2. [reste: int -> int -> int]qui calcule le reste de la division euclidienne d’un entier
a par un autre b, sans utiliser [mod]. On supposera a > 0 et b > 0.

Q3. ‘pgcd: int -> int -> int‘ qui calcule le PGCD de deux entiers avec 1'algorithme
d’Euclide

Q4. ‘puiss_rapide: float —-> int -> float‘ qui calcule de maniere rapide la puissance
d’un entier par un autre

Q5. \div_eucl: int -> int -> (int * int) \ qui calcule le couple (quotient, reste) de la
division euclidenne d’un entier a par un autre entier b, sans utiliser les opérateurs

et [mod]. On supposera a > 0 et b > 0.
Q6. [decomp: int -> int -> unit]telle que décompose x en base b et affiche

les chiffres un par un.

. (Difficile) |a_racine: (int -> int)-> bool | telle que renvoie si

f admet une racine dans Z, et boucle a 'infini sinon. On pourra passer par une
fonction auxiliaire récursive prenant plus de parametres en entrée.

~J

Q

Informatique - MP2I - Lycée Pierre de Fermat 6 /@

