
Ordre et induction

Guillaume Rousseau
MP2I Lycée Pierre de Fermat
guillaume.rousseau@ens-lyon.fr

28 janvier 2026

1. RELATIONS, ORDRES

1 Relations, ordres

A Définitions

Définition 1

Soit X un ensemble. Une relation binaire sur X est un ensemble R ⊆ X2. Si x, y ∈ X
sont tels que (x, y) ∈ R, on dit que x et y vérifient la relation R. On note cela xRy.

Exemple 1

— {(x, y) ∈ R2 | x = y} est une relation binaire sur R
— {(u, v) ∈ ({a, b, ..., z}∗)2 | u.v = u.v} est une relation binaire sur {a, b, ..., z}∗, elle met

en relation tous les mots sur cet alphabet qui commutent.

— {(x, y) ∈ R2 | x < y} est une relation binaire sur R
— Pour X un ensemble et f : X → X une fonction, {(x, y) ∈ X2 | y = f(x)} est une

relation binaire sur X.

Définition 2

Soit X un ensemble et R une relation binaire sur X. On dit que :

— R est réflexive si ∀x ∈ X, xRx

— R est symétrique si ∀x, y ∈ X, xRy ⇒ yRx

— R est antisymétrique si ∀x, y ∈ X, xRy et yRx ⇒ x = y

— R est transitive si ∀x, y, z ∈ X, xRy et yRz ⇒ xRz

Exercice 1

Pour chacune des 4 relations de l’exemple précédent, dire si elle est réflexive, symétrique,
antisymétrique, transitive.

Représentation graphique Une relation R sur un ensemble X fini peut se représenter
graphiquement par ce que l’on appelle un graphe orienté (voir chapitre 13). On représente
chaque élément de X par un point dans l’espace, et on trace une flèche d’un point x1 à un
point x2 pour indiquer x1Rx2. Par exemple, voici le graphe de la relation “est divisible par”
sur l’ensemble {0, 1, 2, 3, 4, 5, 6} :

MP2I Pierre de Fermat 2025-2026 2/20

1. RELATIONS, ORDRES

Exercice 2

Comment se traduit sur le graphe d’une relation R le fait qu’elle soit réflexive, symétrique,
antisymétrique, ou transitive ?

Définition 3

Soit X un ensemble et R une relation binaire sur X.

— On dit que R est une relation d’équivalence si elle est réflexive, symétrique et
transitive.

— On dit queR est une relation d’ordre si elle est réflexive, antisymétrique et transitive.

B Clôtures

Définition 4

Soit X un ensemble et R,R′ deux relations binaires sur X. On note R′ ◦ R la relation
suivante :

∀x, z ∈ X, xR′ ◦ Rz ⇔ ∃y ∈ X, xR′y et yRz

On parle de composition de relations. La composition est associative, et pour n ∈ N,
on note Rn = R ◦ · · · ◦ R la composée n fois de R avec elle-même.

Proposition 1

Pour R une relation binaire sur un ensemble X et n ∈ N, xRny si, et seulement si, il existe
x1, . . . xn−1 ∈ R tels que xRx1R . . .Rxn−1Ry.

Remarque 1

En reprenant la représentation graphique présentée plus haut, la relation Rn représente
donc les éléments x, y tels qu’il existe un chemin d’exactement n flèches de x à y dans le
graphe de la relation R.

Définition 5

Soit X un ensemble et R une relation binaire sur X. On note :

— Rr = R∪ {(x, x) | x ∈ X} la clôture réflexive de R
— Rs = R∪ {(y, x) | xRy} la clôture symétrique de R

— Rt =
⋃
n∈N∗

Rn la clôture transitive de R

Exercice 3

Donner une interprétation des trois relations de la définition précédente dans le graphe de
la relation R.

3/20 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Proposition 2

Soit X un ensemble et R une relation binaire sur X.

— Rr est la plus petite relation réflexive contenant R
— Rs est la plus petite relation symétrique contenant R
— Rt est la plus petite relation transitive contenant R

C Relations d’ordre

Définition 6

On dit qu’un ordre (X,≤) est total, ou que X est totalement ordonné, si ∀x, y ∈ X,
x ≤ y ou y ≤ x, autrement dit si deux éléments sont toujours comparables.

Définition 7

Soit (X,≤) un ensemble ordonné et Y ⊆ X.

— Soit x ∈ X. On dit que x est un minorant (resp. majorant) de Y si ∀y ∈ Y, x ≤ y
(resp. x ≥ y).

— Soit x ∈ X. x est un plus petit (resp. plus grand) élément de Y si x est un minorant
(resp. majorant) de Y et x ∈ Y .

— Soit y ∈ Y . y est minimal dans Y s’il n’y a pas d’autre élément plus petit, i.e. si :

∀y′ ∈ Y, y′ ≤ y ⇒ y′ = y

— Soit y ∈ Y . y est maximal dans Y s’il n’y a pas d’autre élément plus grand, i.e. si :

∀y′ ∈ Y, y′ ≥ y ⇒ y′ = y

Attention à ne pas confondre un plus petit élément et un élément minimal. Un plus petit
élément est plus petit que tout le monde, un élément minimal n’est plus grand que
personne. Pour les ordres totaux les deux cöıncident, mais ce n’est pas le cas en général.

Exercice 4

Pour les ensembles ordonnés suivants, donnez les éléments minimaux, et les plus petits
éléments :

— N muni de l’ordre ≤ naturel

— R+∗ muni de l’ordre ≤ naturel

— (N \ {1}, |)
— P(X) \ {∅} muni de l’inclusion ⊆, où X est un ensemble quelconque.

Proposition 3

Soit (X,≤) un ensemble ordonné et Y ⊆ X une partie admettant un plus petit élément.
Alors, ce plus petit élément est unique, et on le note min(Y)

Démonstration. Si y, y′ sont deux plus petits éléments de Y , alors y ∈ Y et y′ ∈ Y . Donc,
y ≤ y′ et y′ ≤ y, et par antisymétrie, y = y′. D’où l’unicité.

MP2I Pierre de Fermat 2025-2026 4/20

1. RELATIONS, ORDRES

Proposition 4

Soit (X,≤) un ensemble totalement ordonné et Y ⊆ X, alors, tout élément minimal de Y
est un plus petit élément de Y . En particulier, Y n’admet qu’au plus un élément minimal.

Démonstration. Soit y élément minimal de Y . Alors y ∈ Y , et si z ∈ Y
y, alors z n’est pas inférieur à y, et donc comme l’ordre est total, y < z. Donc, y ≤ z pour tout
z ∈ Y et y ∈ Y : y est un plus petit élément de Y .

Les propriétés précédentes s’appliquent aussi aux éléments maximaux et aux plus grands
éléments.

Définition 8

Soit (X,≤) un ensemble ordonné et Y ⊆ X. Si l’ensemble des minorants de Y admet
un plus grand élément, on dit que c’est la borne inférieure de Y . De même, on dit qu’un
élément de X est la borne supérieure de Y si c’est le plus petit des majorants de Y (sous
réserve d’existence). Lorsque les bornes de Y existent, on les note inf(Y) et sup(Y), et elles
vérifient donc :

∀m ∈ X, (∀y ∈ Y,m ≤ y) ⇒ m ≤ inf(Y)

∀M ∈ X, (∀y ∈ Y,M ≥ y) ⇒ M ≥ sup(Y)

Une propriété fondamentale de la borne inférieure est que tout autre minorant lui est
inférieur. En particulier, si m est un minorant de Y et m ≥ inf(Y) alors m = inf(Y). Idem
pour la borne supérieure.

Exemple 2

On considère Y = { ⌊10n
√
2⌋

10n
| n ∈ N}, l’ensemble des écritures décimales tronquées de

√
2. Y

admet une borne supérieure dans R,
√
2, mais pas dans Q. Notons que

√
2 ̸∈ Y : la borne

supérieure d’un ensemble n’en fait pas forcément partie.

Exercice 5

Soit (X,≤) un ensemble ordonné et Y un ensemble admettant un plus petit élément a. Que
dire de la borne inférieure de Y ?

5/20 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

D Ordre lexicographique, ordre produit

Un exemple fondamental d’ordre : l’ordre lexicographique. On rappelle que pour Σ un
ensemble fini non vide, on note Σ∗ =

⋃
n∈N Σ

n l’ensemble des mots finis sur Σ. On note ε
l’unique élément de Σ0.

Si u ∈ Σn, on le note u = u1u2 . . . un et on appelle u1, . . . , un les lettres de u. On note |u| = n
sa taille.

On note u.v la concaténation de deux mots u, v ∈ Σ∗, c’est à dire le mot w de taille |u|+ |v|
tel que wj = uj pour 1 ≤ j ≤ |u| et wj = vj−|u| si j > |u|.

Définition 9

Si u, v ∈ Σ∗ sont tels que v = u.w pour un certain w ∈ Σ∗, alors on dit que u est un préfixe
de v. On dit que c’est un préfixe strict si de plus u ̸= v.

Définition 10

Si (Σ,≤Σ) est un ensemble ordonné, alors on définit l’ordre lexicographique ≤lex sur Σ∗

comme suit : soient u, v ∈ Σ∗. u ≤lex v si et seulement si l’une des deux conditions suivantes
est satisfaite :

— u est un préfixe de v

— Il existe j ∈ N∗ avec j ≤ |u|, j ≤ |v| tel que uj < vj et uk = vk pour tout k ∈ J1, j−1K.

L’ordre lexicographique correspond à l’ordre alphabétique : on compare d’abord la première
lettre des deux mots, et si elles sont égales on passe à la deuxième, et ainsi de suite.

Exercice 6

Montrer que cette relation est bien un ordre sur Σ∗, que c’est un ordre total, et qu’elle
admet le mot vide ε comme plus petit élément.

Exemple 3

Si Σ est l’alphabet latin minuscule, avec l’ordre a < b < c... < z alors l’ordre lexicogra-
phique est simplement l’ordre alphabétique.

On a par exemple a < aa < aaa < a1000 < ab < ba.

Exercice 7

Q1. On considère l’alphabet Σ = {a, b} avec l’ordre a < b. On munit Σ∗ de l’ordre
lexicogaphique, et on considère A = {an | s ∈ N} ⊆ Σ∗ l’ensemble des mots constitués
uniquement de a. A possède-t-il un plus grand élément ? Et une borne supérieure dans
Σ∗ ?

Définition 11

Soient (X1,≤1), . . . , (Xn,≤n) des ensembles ordonnés.

— On appelle également ordre lexicographique sur X1×· · ·×Xn l’ordre ≤lex suivant :
Si x = (x1, . . . , xn) et y = (y1, . . . , yn) sont des éléments de X1×· · ·×Xn, alors x ≤ y
si x = y ou bien si

MP2I Pierre de Fermat 2025-2026 6/20

1. RELATIONS, ORDRES

∃i ∈ J1, nK, xi <i yi et ∀j < i, xj = yj

Par exemple, sur N × N, avec cet ordre, on a (2, 30) < (3, 6) car 2 < 3, et (2, 30) <
(2, 35) car 2 = 2 et 30 < 35.

— On appelle ordre produit sur X1×· · ·×Xn l’ordre ≤prod suivant : Si x = (x1, . . . , xn)
et y = (y1, . . . , yn) sont des éléments de X1 × · · · ×Xn, alors

x ≤lex y ⇔ ∀i ∈ J1, nK, xi ≤i yi

Proposition 5

L’ordre produit et l’ordre lexicographique sont des relations d’ordres totales.

E Ordre bien fondé

Dans cette partie, on pose (X,≤X) et (Y,≤Y) deux ensembles ordonnés. On notera <X et
<Y les ordres stricts correspondant. Ainsi, pour x, x′ ∈ X, x <X x′ ⇔ x ≤X x′ et x ̸= x′.

Définition 12

— Une fonction f : X → Y est croissante ssi ∀x1, x2 ∈ X, x1 ≤X x2 ⇒ f(x1) ≤Y

f(x2).

— Une fonction f : X → Y est strictement croissante ssi ∀x1, x2 ∈ X, x1 <X x2 ⇒
f(x1) <Y f(x2).

On étend ces définitions aux suites de XN vues comme fonctions de (N,≤N) → (X,≤X),
où ≤N est l’ordre naturel sur N . Un suite (xn)n∈N ∈ XN est donc croissante si et seulement
∀n ≤ m ∈ N, xn ≤X xm.

Exemple 4

On note | la relation de divisibilité sur N. C’est une relation d’ordre, mais l’ordre n’est pas
total : 2 et 3 ne sont pas comparables. On considère les fonction suivante :

f :
(N∗,≤) −→ (N∗, |)
x 7−→ x

g :
(N∗, |) −→ (N∗,≤)
x 7−→ x

f n’est pas croissante, car 2 ≤ 3 mais 2 ne divise pas 3. En revanche, g est croissante :
si x, y ∈ N∗ et x|y, alors x ≤ y.

Exercice 8

Soit f : X → Y strictement croissante.

Q1. On suppose que l’ordre sur X est total. Montrez que f est injective.

Q2. Trouver un contre-exemple lorsque X n’est pas total.

7/20 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Définition 13

On dit que l’ordre ≤X est bien fondé ssi toute partie A ⊆ X non vide admet un élément
minimal.

Proposition 6

Un ordre (X,≤X) est bien fondé ssi il n’existe aucune suite strictement décroissante de XN

Démonstration. Montrons le résultat par double implication. On considère un ordre (X,≤X)

⇒ On suppose que (X,≤X) est bien fondé. Supposons par l’absurde qu’il existe une suite
(un)n∈N ∈ XN strictement décroissante. On pose A = {un|n ∈ N}. A ̸= ∅ donc A possède
un élément minimal. Notons n0 ∈ N tel que un0 = min(A). Par décroissance stricte,
un0+1 < un0 , et par minimalité, un0 ≤ un0+1 : d’où la contradiction.

⇐ Par contraposée, on suppose que l’ordre n’est pas bien fondé. A n’est pas nul, on pose
donc a0 ∈ A quelconque. a0 n’est pas minimal dans A, donc il existe a1 ∈ A tel que
a1 < a0. a1 n’est pas minimal dans A, donc il existe a2 ∈ A tel que a2 < a1. Ainsi de
suite, on peut construire une suite (an)n∈N strictement décroissante dans A. 1

Exercice 9

Pour chacun des ordres suivants, dire s’il est bien fondé :

— (Z,≤)

— (N,≤)

— (R+,≤)

— (N, |)
— (P(N),⊆)

1. Cette étape utilise sans le dire l’axiome du choix.

MP2I Pierre de Fermat 2025-2026 8/20

1. RELATIONS, ORDRES

Proposition 7

Soit (X1,≤1), . . . , (Xn,≤n) des ensembles bien fondés. Alors :

— L’ensemble X1 × · · · ×Xn muni de l’ordre produit est bien fondé.

— L’ensemble X1 × · · · ×Xn muni de l’ordre lexicographique est bien fondé

Démonstration. Nous avons déjà vu que ces relations sont des ordres.

— Notons ≤P l’ordre produit sur X1 × · · · × Xn. On suppose par l’absurde que ce n’est
pas un ordre bien fondé. Alors, par propriété des ordres bien fondés, il existe une suite
(yk)k∈N ∈ (X1×· · ·×Xn)

N strictement décroissante. Pour k ∈ N, notons yk = (x1
k, . . . x

n
k).

Alors, la suite (x1
k)k∈N est strictement décroissante. En effet, pour k ∈ N, yk+1 <P yk,

donc xi
k+1 <i x

i
k pour i ∈ J1, nK. Donc en particulier x1

k+1 <1 x
1
k. Or, l’ordre (X1,≤1) est

bien fondé, ce qui fournit une contradiction.

Donc, ≤P est bien fondé.

— Notons ≤L l’ordre lexicographique surX1×· · ·×Xn. On suppose par l’absurde que ce n’est
pas un ordre bien fondé. Alors, par propriété des ordres bien fondés, il existe une suite
(yk)k∈N ∈ (X1×· · ·×Xn)

N strictement décroissante. Pour k ∈ N, notons yk = (x1
k, . . . x

n
k).

L’ensemble {x1
k|k ∈ N} est non vide, et donc admet un plus petit élément a1, car (X1,≤1)

est bien fondé. Notons k1 ∈ N tel que x1
k1

= a1. Par décroissance, x1
k = a1 pour k ≥ k1.

L’ensemble {x2
k|k ≥ k1} est non vide, et admet donc un plus petit élément a2. Notons

k2 ≥ k1 ∈ N tel que x2
k2

= a2. Par décroissance, x2
k = a2 pour k ≥ k2. Donc, pour k ≥ k2,

x1
k = a1 et x2

k = a2.

On définit ainsi de suite k1, k2, . . . kn ∈ N et a1 ∈ X1 . . . an ∈ Xn tels que pour j ∈ J1, nK,
pour k ≥ kj, on a x1

k = a1, . . . , xj
k = aj.

En particulier, pour k ≥ kn, on a yk = (a1, . . . , an), la suite (yk)k n’est donc pas strictement
décroissante : on aboutit à une contradiction.

En revanche, si (Σ,≤) est un ordre bien fondé, Σ∗ muni de l’ordre lexicographique n’est pas
nécessairement bien fondé (Cf TD).

Une première utilité des ordre bien fondés est de montrer la terminaison d’une fonction
récursive, en généralisant le principe de descente infinie de Fermat. En effet :

Proposition 8

Si f est une fonction récursive, définie sur un ensemble X muni d’un ordre ≤ bien fondé,
et que pour tout x ∈ X, l’appel à f(x) cause des appels récursifs f(x1), . . . , f(xk) avec
x1 < x, . . . , xk < x, alors la fonction termine.

En effet, si la fonction ne terminait pas, on pourrait trouver une suite d’appels récursifs
infinie, et donc trouver une suite strictement décroissante dans X. On verra dans la prochaine
section comment formaliser cette idée.

9/20 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Exemple 5

On considère les fonctions suivantes :

1 (* Nombre de 1 dans l'écriture en base 3 de x

2 pour x entier positif ou nul *)

3 let rec uns_base_3 x = assert (x >=0);

4 if x = 0 then 0 else

5 match x mod 3 with

6 | 1 -> uns_base_3 (x/3) + 1

7 | _ -> uns_base_3 (x/3) ;;

8
9 let rec pgcd x y =

10 assert (x>=0 && y >= 0);

11 assert (x>0 || y > 0) ;

12 match (x, y) with

13 | (0, a) | (a, 0) -> a

14 | _ -> if x > y then pgcd (x-y) x

15 else pgcd x (y-x);;

Montrons que la fonction uns_base_3 termine. On remarque que si x ≥ 0, alors l’appel
récursif causé par uns_base_3 x se fait sur une entrée x′ ≥ 0 avec x′ < x. Donc, N étant
bien fondé, la fonction termine sur toutes les entrées positives. De plus, l’assertion garanti
la terminaison pour les entrées strictement négatives.

Appliquons le même schéma à la fonction pgcd . En prenant en compte les assertions,

on se restreint aux entrées dans E = (N × N)\{(0, 0)}. On munit cet ensemble de l’ordre
lexicographique. On remarque ainsi que chaque appel à pgcd causant un appel récursif le

fait sur une entrée strictement inférieure selon cet ordre. En effet, pour (x, y) ∈ N∗ :

— Si x > y alors x− y > 0, donc (x− y, x) ∈ E, et (x− y, x) < (x, y) car y > 0

— Sinon, alors (x ≤ y), donc y − x ≥ 0, et (x, y − x) < (x, y) car x > 0.

Donc, la fonction termine.

Proposition 9

Soit X un ensemble quelconque et (Y,≤Y) un ensemble bien fondé. Soit f : X → Y On
définit la relation R sur X par :

∀x, x′ ∈ X, xRx′ ⇔ f(x) < f(x′)

Alors (X,Rr) est un ordre, et il est bien fondé (Rappel : Rr est la clôture réflexive).

Démonstration. Montrons que Rr est une relation d’ordre : Exercice

Montrons que c’est un ordre bien fondé. Supposons par l’absurde qu’il existe une suite
(xn)n∈N ∈ XN strictement décroissante. Donc, pour tout n ∈ N, xnRxn+1. Donc par définition
de R, pour tout n ∈ N, f(xn) < f(xn+1). Alors, la suite (f(xn))n∈N ∈ Y N est strictement
décroissante : c’est absurde car Y est bien fondé.

MP2I Pierre de Fermat 2025-2026 10/20

1. RELATIONS, ORDRES

Cette dernière propriété permettra de généraliser la notion de variant de boucle. Lorsque
l’on étudie une fonction récursive, définie sur un ensemble X, un schéma classique de preuve
de terminaison sera :

1. Exhiber un sous-ensemble X0 ⊆ X d’entrées valides (typiquement, cet ensemble sera
donné par les préconditions, les hypothèses, les assertions)

2. Exhiber une fonction f : X0 → Y où Y est muni d’un ordre bien fondé

3. Montrer que tout appel sur une entrée x ∈ X0 cause uniquement des appels récursifs sur
des entrées x′ ∈ X0 avec f(x′) < f(x)

Exemple 6

On considère les fonctions suivante :

1 let rec f l = match l with

2 | [] -> failwith "liste vide"

3 | [x] -> x

4 | x::y::q -> f ((max x y)::q)

5
6
7 let rec g (l1, l2) =

8 match (l1, l2) with

9 | [], _ -> somme l2

10 | x1::q1, [] -> g ([],g (q1, (x1+1)::q1)::q1)

11 | x1::q1, x2::q2 -> g ((x1+x2)::q1, q2)

12 ;;

— Pour f : On considère l’ensemble des listes non vides X0. Les appels récursifs causés
par l’appel de f sur une liste non vide se font également sur des listes non vides. On
considère la fonction L : l 7→ |l| qui associe à une liste sa longueur. Cette fonction
est à valeurs dans N, qui est bien fondé, et les appels récursifs font décrôıtre L(l)
strictement. Donc, la fonction termine.

— Pour g : On considère la fonction L : (l1, l2) 7→ (|l1|, |l2|). L est à valeur dans N2, que
l’on munit de l’ordre lexicographique. Cet ordre est bien fondé, et les appels récursifs
causés par f sont tels que pour (l1, l2) deux listes, tout appel récursif f(l1', l2')

causé par f (l1, l2) vérifie L(l′1, l
′
2) < L(l1, l2).

On a donc trouvé une fonction sur les entrées dont la valeur décrôıt strictement à
chaque appel récursif, et qui est à valeur dans un ensemble ordonné bien fondé : la
fonction termine.

11/20 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

2 Induction

Le raisonnement par induction va permettre de généraliser le principe de récurrence. On
rappelle le principe de récurrence faible :

Proposition 10

Soit P une propriété sur N, telle que :

— P (0)

— ∀n ∈ N, P (n) ⇒ P (n+ 1)

Alors, ∀n ∈ N, P (n).

Démonstration. On considère A = {n ∈ N | P (n) est fausse}. On suppose par l’absurde que A
est non-vide. A ⊆ N donc A admet un élément minimal n0. n0 ̸= 0 car P (0) est vraie. Donc,
n0 − 1 ∈ N et par minimalité, P (n0 − 1) est vraie. Donc, P (n0) est vraie : absurde.

On a plus généralement le principe de récurrence forte :

Proposition 11

Soit P une propriété sur N, telle que : ∀n ∈ N, (∀k < n, P (k)) ⇒ P (n). Alors, ∀n ∈ N, P (n).

Ce principe signifie que si une propriété est telle qu’en la supposant vraie pour tous les
entiers inférieurs à n, alors elle est vraie pour n également, alors cette propriété est vraie pour
tous les entiers.

A Induction bien fondée

Proposition 12: Principe d’induction bien fondée

Soit (X,≤) un ensemble ordonné non vide et P une propriété sur X. Alors, si ≤ est bien
fondé, on a :

(∀x ∈ x, (∀y ∈ X, y < x ⇒ P(y)) ⇒ P(x)) ⇒ ∀x ∈ X,P(x)

Démonstration. Notons IP(x) : (∀y ∈ X, y < x ⇒ P(y)) ⇒ P(x)). IP(x) signifie : “si P est
vraie sur tous les éléments inférieurs à x, alors P est vraie sur x“.
Il faut montrer que si IP(x) est vraie pour tout x ∈ X, alors P(x) est vraie pour tout x ∈ X.

Supposons ∀x ∈ X, IP(x). On considère A = {x ∈ X | P(x) est fausse}. On suppose par
l’absurde que A est non-vide. A ⊆ X et l’ordre est bien fondé, donc A admet un élément
minimal x0. Par contraposée de IP(x0), il existe y ∈ X avec y < x et P(y) fausse. Alors, y ∈ A,
et par minimalité de x, on n’a pas y ≤ x, ce qui est absurde.

Cette propriété généralise le principe de récurrence à tous les ensembles bien fondés.
Le principe d’induction dit donc que pour montrer que P est vraie sur tout X, il suffit de

montrer que IP est vraie sur tout X.
Par exemple, pour l’ordre naturel sur N, le principe d’induction dit que pour prouver une

propriété P sur N, il faut prouver que pour n ∈ N, si P(k) est vraie pour k < n, alors P(n) est
vraie : c’est bien le principe de récurrence forte ! On remarque que pour montrer IP(0), il faut
directement montrer P(0), car 0 n’a aucun prédécesseur.

MP2I Pierre de Fermat 2025-2026 12/20

2. INDUCTION

Utilisons ce principe pour étudier quelques fonctions. Reprenons la fonction de pgcd vue
plus haut :

1 let rec pgcd x y =

2 assert (x>=0 && y >= 0);

3 assert (x>0 || y > 0) ;

4 match (x, y) with

5 | (0, a) | (a, 0) -> a

6 | _ -> if x > y then pgcd (x-y) x

7 else pgcd x (y-x);;

Montrons que cette fonction réalise bien le pgcd. Pour n,m ∈ N deux entiers, avec (n,m) ̸=
(0, 0), on note n ∧m le pgcd de n et m.

On induit N× N de l’ordre lexicographique. Montrons par induction sur (n,m) :

∀(n,m) ∈ (N× N)\{(0, 0)}, P (n,m) : pgcd(n,m) = n ∧m

On considère donc (n,m) ∈ (N×N)\{(0, 0)}, et on suppose que pour tout couple (n′,m′) ∈
(N× N)\{(0, 0)} avec (n′,m′) < (n,m), la propriété P (n′,m′) est vraie.

— Si n = 0, pgcd(n,m) = m = 0 ∧m, la propriété est vraie

— Si m = 0, pgcd(n,m) = n = n ∧ 0, la propriété est vraie

— Sinon, si n > m alors n − m > 0, et comme m > 0, n − m < n. Donc, par hypothèse
d’induction, P (n−m,n) est vraie. Donc pgcd(n,m) = pgcd(n−m,n) = (n−m)∧ n =
n ∧m

— Sinon, alors n ≤ m, et comme n > 0, m − n < m. Donc, par HI, P (n,m − n) est vraie.
On conclut de manière analogue au cas précédent.

Au dernier chapitre, nous avons montré formellement la correction de fonctions sur les listes,
en raisonnant par récurrence sur la taille des listes. On peut aussi raisonner directement par
induction sur les listes, on considérant l’ordre induit par la longueur des listes. On rappelle le
code du tri fusion :

1 let rec separer l = match l with

2 | [] | [_] -> (l, [])

3 | x::y::q -> let (l1, l2) = separer q in (x::l1, y::l2)

4
5 let rec fusionner l1 l2 = match l1, l2 with

6 | [], l | l, [] -> l

7 | x1::q1, x2::q2 -> if x1 < x2 then x1 :: fusionner q1 l2

8 else x2 :: fusionner l1 q2

9
10 let rec tri_fusion l = match l with

11 | [] | [_] -> l

12 | _ -> let l1, l2 = separer l in

13 let l1, l2 = tri_fusion l1, tri_fusion l2 in

14 fusionner l1 l2

Montrons formellement la correction de fusionner :

On note L l’ensemble des listes. On munit L de l’ordre induit par la fonction taille : L → N.
Cet ordre est bien fondé. On munit ensuite L2 de l’ordre lexicographique, lui aussi bien fondé.

Terminaison : On remarque que les entrées décroissent strictement à chaque appel récursif :
la fonction termine.

13/20 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

Correction : On pose P (l1, l2) : Si l1 et l2 sont triées, alors fusionner(l1, l2) est triée et
contient les éléments de l1 et l2.

Montrons par induction sur L2 que

∀(l1, l2) ∈ L2, P (l1, l2)

On considère donc l1, l2 deux listes triées.

• Si l1 est vide, alors fusionner(l1, l2) = l2, donc la propriété est vérifiée

• Si l2 est vide, alors fusionner(l1, l2) = l2, donc la propriété est vérifiée

• Si aucune des deux listes est vide, alors l1 = x1 :: q1 et l2 = x2 :: q2.

— Si x1 < x2 : par hypothèse d’induction, P (q1, l2) est vraie car (q1, l2) < (l1, l2). De
plus, q1 est triée. Donc fusionner(q1, l2) contient les éléments de q1 et l2, et est
triée. De plus, x1 est l’élément minimal de l1, et est inférieur à x2 qui est l’élément
minimal de l2. Donc, x1 est inférieur à tous les éléments de fusionner(q1, l2), et donc
fusionner(l1, l2) = x1 :: fusionner(q1, l2) est bien triée, et contient les éléments de
l1 et l2. La propriété est bien vérifiée.

— Sinon, le raisonnement est analogue

Ainsi, la propriété est vraie pour toute paire de listes, et donc la fonction est correcte.

Exercice 10

Montrer de la même manière la correction du tri fusion. On pourra admettre la correction
de la fonction de séparation de liste.

MP2I Pierre de Fermat 2025-2026 14/20

2. INDUCTION

B Construction d’un ensemble par induction

Considérons le code suivant :

1 type couleur =

2 | Rouge

3 | Jaune

4 | Bleu

5 | Melange of couleur*couleur;;

6
7 (* Renvoie la fraction de la couleur primaire cp présente dans c *)

8 let rec frac_primaire cp c =

9 match c with

10 | Rouge | Jaune | Bleu -> if c = cp then 1. else 0.

11 | Melange (c1, c2) -> 0.5 *. frac_primaire cp c1 +. 0.5 *. frac_primaire cp c2 ;;

De quel ordre bien fondé munir l’ensemble de définition de cette fonction pour y appliquer
les résultats précédents ? Plus généralement, quel est l’ensemble mathématique qui représente
le type couleur ?

Les ensembles définis par induction vont permettre de représenter les types somme en
OCaml : les listes, le type couleur , etc...

Définition 14

Une règle de construction est un triplet (C, r, P) où :

— C est un symbole, appelé constructeur

— r est un entier, appelé arité

— P est un ensemble

Si r = 0 on parle de règle de base, sinon de règle d’induction.

Une règle de construction correspondra à un constructeur d’un type OCaml, et donc un
type, qui est une liste finie de constructeurs, correspondra à une liste finies de règles.

Par exemple, on considère le type OCaml suivant :

1 type boisson =

2 | Eau

3 | Jus of string

4 | Melange of boisson * boisson * float ;;

Il est représenté par trois règles de constructions :

— (Eau, 0, {•}), où {•} est un ensemble singleton

— (Jus, 0,Σ∗) où Σ est l’ensemble des caractères ASCII

— (Melange, 2,R)

L’arité correspond donc au nombre de paramètres récursifs que nécessite le constructeur, et
l’ensemble P d’une règle correspond aux autres paramètres, ceux qui ne sont pas récursifs.

Exercice 11

Soit A un ensemble. Donner deux règles de constructions permettant de représenter les
listes d’éléments de A.

15/20 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

Définition 15

Soit C un ensemble de règles de constructions, dont tous les symboles de constructeurs sont
distincts. On note B l’ensemble des règles de base, et I l’ensemble des règles d’induction.

On définit :

— X0 = {(C, p)|(C, 0, P) ∈ B, p ∈ P}
— Pour n ∈ N, Xn+1 = Xn ∪ {(C, p, x1, . . . , xr)|(C, r, P) ∈ I, p ∈ P, (x1, . . . , xr) ∈ Xr

n}

On note ensuite X la limite des ensembles Xn :

X =
⋃
n∈N

Xn

On dit que X est l’ensemble construit par induction à partir de C.

Exemple 7

Reprenons le type boisson . On a donc :

C = {(Eau, 0, {•}), (Jus, 0,Σ∗), (Melange, 2,R)}
B = {(Eau, 0, {•}), (Jus, 0,Σ∗)}
I = {(Melange, 2, [0, 1])}

Que contient X ? On commence par regarder le contenu des différents Xn pour n ∈ N.

— X0 contient (Eau, •), (Jus, ”orange”), (Jus, ”fraise”), (Jus, ”goyave”), On les no-
tera simplement Eau,Jus(”orange”),Jus(”fraise”),Jus(”goyave”).

— X1 contient tous les éléments de X0 ainsi que :

— Melange(Eau,Eau, 0.5)

— Melange(Eau,Jus(”fraise”), 0.87)

— Melange(Jus(”framboise”),Jus(”pomme”), 0.97)

— . . .

— X2 contient tous les éléments de X1 ainsi que :

— Melange(Melange(Eau,Jus(”fraise”), 0.87),Jus(”pomme”), 0.14)

— ...

Il apparâıt queXn permet de représenter l’ensemble des valeurs OCaml du type boisson

ayant une “profondeur” de récursivité d’au plus n, et X représente les valeurs OCaml du
type boisson de profondeur finie quelconque.

C Induction structurelle

Dans la suite, on considère X un ensemble construit par induction à partir de C = B ∪ I.
On identifiera une règle C = (S, r, P) avec son symbole S, et on supposera donc que les règles
ont des symboles distincts. On note comme dans la définition :

— X0 = {(C, p) | (C, 0, P) ∈ B, p ∈ P}
— Pour n ∈ N, Xn+1 = Xn ∪ {(C, p, x1, . . . , xr) | (C, r, P) ∈ I, p ∈ P, (x1, . . . , xr) ∈ Xr

n}.

Il reste maintenant à définir un ordre bien fondé sur X.

MP2I Pierre de Fermat 2025-2026 16/20

2. INDUCTION

Définition 16

Soit x ∈ X. On appelle hauteur de x l’indice n0 minimal tel que x ∈ Xn. On définit donc
la fonction suivante :

X −→ N
h : x 7−→ min{n ∈ N | x ∈ Xn}

Proposition 13

On a :

— X0 = {x ∈ X | h(x) = 0}
— ∀n ∈ N∗, {x ∈ X | h(x) = n} = Xn\Xn−1

Définition 17

On définit la relation R sur X par :

∀x, y ∈ X, aRb ⇔ ∃(S, r, P) ∈ I,∃p ∈ P, ∃x1, . . . , xr ∈ X, ∃i ∈ J1, rK, y = S(p, x1, . . . , xr) et xi = x

Autrement dit, xRy si y est construit à partir de x.

Remarque 2

On a ∀x, y ∈ X, xRy ⇒ h(y) ≥ h(x) + 1.

Proposition 14

On note ≤X la clôture réflexive transitive de R :

≤X=
⋃
n∈N

Rn

Alors ≤X est une relation d’ordre, et c’est un ordre bien fondé.

Démonstration. ≤X est transitive et réflexive. Il reste à montrer qu’elle est antisymétrique.
Soient x, y ∈ X tels que x ≤X y et y ≤X x. Il existe donc n1, n2 tels que xRn1y et yRn1x. On
suppose par l’absurde que x ̸= y. Donc, n1, n2 sont non nuls. En itérant la remarque précédente,
on a donc h(y) ≥ h(x) + n2 > h(x) et h(x) ≥ h(y) + n1 > h(y). Donc, h(y) > h(x) > h(y) :
absurde.

≤X est bien un ordre. De plus, la fonction h : (X,≤X) → (N,≤) est strictement croissante
et (N,≤) est bien fondé : (X,≤X) est donc également bien fondé.

On applique le principe d’induction bien fondé à cet ordre pour faire des preuves sur les
ensembles construits par induction. Ce principe, que l’on utilisera très souvent pour étudier de
nombreux objets inductifs, s’appelle le principe d’induction structurelle.

En pratique, on n’utilise souvent que les prédécesseurs directs. Plus précisément, on utilisera
la propriété suivante, qui est l’analogue de la récurrence faible sur N :

17/20 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

Proposition 15

Soit P une propriété sur X telle que :

— ∀(S, 0, P) ∈ B,∀p ∈ P , P(S(p)) est vraie

— ∀(S, r, P) ∈ I, ∀p ∈ P, ∀x1, . . . , xr ∈ X, (∀i ∈ J1, rK,P(xi)) ⇒ P(S(p, x1, . . . , xr))

Alors, P(x) est vraie pour tout x ∈ X.

Autrement dit, si une propriété est vraie sur tous les éléments construits avec les construc-
teurs de base, et qu’elle se transmet bien via les constructeurs inductifs, alors elle est vraie sur
tout X.

Pour voir comment l’utiliser dans une preuve, il nous faut pouvoir définir des fonctions par
induction, afin d’exprimer des propriétés dessus.

D Fonctions définies par induction

Pour définir sur X une fonction par induction, il faudra définir d’une part son comporte-
ment sur les constructeurs de bases, et d’autre part son comportement sur les constructeurs
inductifs. On pourra définir les fonctions inductives de manière similaire à ce que l’on fait en
OCaml avec les let rec et les match with.

Par exemple, on considère le type OCaml des listes d’entiers :

1 type liste = ListeVide | ListeNonVide of int * liste ;;

On considère donc l’ensemble Liste construit par induction à partir des règles suivantes :

— (ListeVide, 0, •). On notera [] = ListeVide(•).
— (ListeNonVide, 1,N). On notera n :: q = ListeNonVide(n,q).

On considère ensuite la fonction len définie comme suit :

— len([]) = 0

— Pour n ∈ N, q ∈ Liste, len(ListeNonVide(n, q)) = 1 + len(q)

Cette fonction correspond à la longueur d’une liste. On l’a définie par induction en
définissant son comportement sur chacun des deux constructeurs de l’ensemble Liste.

Montrons maintenant par induction sur la structure des listes la propriété suivante : ∀l ∈
Liste, len(l) ≥ 0.

Il y a deux cas :

— l = []. Alors, len(l) = 0 : la propriété est vérifiée

— l = n :: q avec n ∈ N, q ∈ Liste. On suppose par induction que len(q) ≥ 0. Alors,
len(l) = 1 + len(q) ≥ 0 : la propriété est vérifiée.

Ainsi, par induction structurelle, ∀l ∈ Liste, len(l) ≥ 0.

MP2I Pierre de Fermat 2025-2026 18/20

2. INDUCTION

E Méthode de preuve par induction structurelle

Lorsqu’on a un ensemble construit X par induction à partir de n constructeurs C1, . . . , Cn,
et que l’on doit faire une preuve par induction sur cet ensemble, on suivra le schéma suivant :

1. On annonce la preuve : “Montrons par induction structurelle sur X la propriété suivante :
∀x ∈ X,P (x) :”

2. On annonce le nombre de cas, i.e. le nombre de constructeurs : “Il y a n cas :”

3. Pour chaque cas, on fait l’étape d’induction correspondante : “x = C1(p, x1, . . . , xr),
supposons par induction que P (x1), . . . , P (xr) sont vraies. Alors ...”

4. Une fois chaque cas traité, on conclut : “Ainsi, par induction structurelle, ∀x, P (x)”.

Exercice 12

On considère l’ensemble E des expressions arithmétiques, défini par induction avec les
constructeurs suivants :

— (Const, 0,N) : représente les constantes entières

— (Add, 2, {•}) : représente la somme de deux expressions

— (Mult, 2, {•}) : représente le produit de deux expressions

— (Puiss, 1,N) : représente une expressions mise à une certaine puissance.

On définit la fonction eval : E → N par induction structurelle sur E :

— ∀n ∈ N, eval(Const(n)) = n

— ∀e1, e2 ∈ E , eval(Add(e1, e2)) = eval(e1) + eval(e2)

— ∀e1, e2 ∈ E , eval(Mult(e1, e2)) = eval(e1)× eval(e2)

— ∀e1 ∈ E ,∀a ∈ N, eval(Puiss(e1, a)) = eval(e1)
a

Cette fonction évalue une expression en une valeur, donnant aux constructeurs le sens
attendu. On définit également la fonction estNul : E → B par induction :

— ∀n ∈ N, eval(Const(n)) = (0 si n = 0, 1 sinon)

— ∀e1, e2 ∈ E , estNul(Add(e1, e2)) = (estNul(e1) et estNul(e2))

— ∀e1, e2 ∈ E , estNul(Mult(e1, e2)) = (estNul(e1) ou estNul(e2))

— ∀e1 ∈ E ,∀n ∈ N, estNul(Puiss(e1, a)) = (estNul(e1) et a ̸= 0).

Montrer par induction structurelle sur e ∈ E que eval(e) = 0 ⇐⇒ estNul(e).

19/20 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

F Étude des fonctions récursives OCaml

On considère deux fonctions calculant la somme d’une liste :

1 let rec somme l = match l with

2 | [] -> 0

3 | x::q -> x + somme q

4
5 (* version récursive terminale *)

6 let rec somme_plus l (r: int) : int

7 | [] -> r

8 | x::q -> somme q (x+r)

On note L l’ensemble des listes d’entiers. On montre par induction structurelle sur L :

∀l ∈ L, P (l) : ∀r ∈ Z, somme plus(l, r) = somme(l) + r

Il y a 2 cas :

— Pour la liste vide [], somme plus([], r) = r = 0 + r = somme([]) + r : P ([]) est vraie.

— Pour l = x :: q avec x entier et q une liste. On suppose par induction P (q). Alors par
hypothèse d’induction somme plus(q, x + r) = somme(q) + (x + r) = somme(l) + r.
Donc, somme plus(l, r) = somme(l) + r : P (l) est vraie.

Ainsi, par induction structurelle sur les listes, ∀l ∈ L, P (l).

Exercice 13

Reprendre la preuve de correction du tri fusion, en utilisant le formalisme de l’induction
structurelle.

MP2I Pierre de Fermat 2025-2026 20/20

	Relations, ordres
	Induction

