Ordre et induction

Guillaume Rousseau
MP2I Lycée Pierre de Fermat
guillaume.rousseau@ens-lyon.fr

28 janvier 2026

1. RELATIONS, ORDRES

1 Relations, ordres

A Définitions

Définition 1

Soit X un ensemble. Une relation binaire sur X est un ensemble R C X2 Siz,y € X
sont tels que (z,y) € R, on dit que x et y vérifient la relation R. On note cela zRy.

Exemple 1
— {(z,y) € R? | z = y} est une relation binaire sur R

— {(u,v) € ({a,b, ..., 2}*)? | u.v = u.v} est une relation binaire sur {a, b, ..., 2}*, elle met
en relation tous les mots sur cet alphabet qui commutent.

— {(z,y) € R? | z < y} est une relation binaire sur R

— Pour X un ensemble et f: X — X une fonction, {(z,y) € X? | y = f(x)} est une
relation binaire sur X.

Définition 2
Soit X un ensemble et R une relation binaire sur X. On dit que :
— R est réflexive si Vo € X, xRz
— R est symétrique si Vz,y € X, 2Ry = yRzx
— R est antisymétrique si Vz,y € X, 2Ry et yRe =z =1y
— R est transitive si Vz,y, 2 € X, 2Ry et yRz = 2Rz

Exercice 1

Pour chacune des 4 relations de 'exemple précédent, dire si elle est réflexive, symétrique,
antisymétrique, transitive.

Représentation graphique Une relation R sur un ensemble X fini peut se représenter
graphiquement par ce que l'on appelle un graphe orienté (voir chapitre 13). On représente
chaque élément de X par un point dans ’espace, et on trace une fleche d’un point z; a un
point zo pour indiquer xiRzs. Par exemple, voici le graphe de la relation “est divisible par”
sur I’ensemble {0,1,2,3,4,5,6} :

MP2I Pierre de Fermat 2025-2026 2

1. RELATIONS, ORDRES

Exercice 2

Comment se traduit sur le graphe d’une relation R le fait qu’elle soit réflexive, symétrique,
antisymétrique, ou transitive ?

Définition 3
Soit X un ensemble et R une relation binaire sur X.

— On dit que R est une relation d’équivalence si elle est réflexive, symétrique et
transitive.

— On dit que R est une relation d’ordre si elle est réflexive, antisymétrique et transitive.

B Clotures

Définition 4

Soit X un ensemble et R, R’ deux relations binaires sur X. On note R’ o R la relation
suivante :

Vr,2 € X, 2R o Rz < Jy € X, 2Ry et yR=z

On parle de composition de relations. La composition est associative, et pour n € N,
on note R" =R o---0R la composée n fois de R avec elle-méme.

Proposition 1

Pour R une relation binaire sur un ensemble X et n € N, R"y si, et seulement si, il existe
1, ... Ty_1 € R tels que xRx1R ... Rr,_1Ry.

Remarque 1

En reprenant la représentation graphique présentée plus haut, la relation R™ représente
donc les éléments x,y tels qu’il existe un chemin d’exactement n fleches de x a y dans le
graphe de la relation R.

Définition 5

Soit X un ensemble et R une relation binaire sur X. On note :
— R, =RU{(z,z) | z € X} la cloture réflexive de R
— Rs=RU{(y,z) | 2Ry} la cloture symétrique de R
— Ry = U R™ la cloture transitive de R

neN*

Exercice 3

Donner une interprétation des trois relations de la définition précédente dans le graphe de
la relation R.

3 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Proposition 2

Soit X un ensemble et R une relation binaire sur X.
— R, est la plus petite relation réflexive contenant R
— R est la plus petite relation symétrique contenant R

— Ry est la plus petite relation transitive contenant R

C Relations d’ordre

Définition 6

On dit qu'un ordre (X, <) est total, ou que X est totalement ordonné, si Vr,y € X,
r < youy < x, autrement dit si deux éléments sont toujours comparables.

Définition 7
Soit (X, <) un ensemble ordonné et Y C X.

— Soit x € X. On dit que x est un minorant (resp. majorant) de Y si Vy € Y,z < y
(resp. z > y).

— Soit € X. z est un plus petit (resp. plus grand) élément de Y si = est un minorant
(resp. majorant) de Y et z € Y.

— Soit y € Y. y est minimal dans Y s’il n’y a pas d’autre élément plus petit, i.e. si :

Vy ey <y=y =y

— Soit y € Y. y est maximal dans Y s’il n'y a pas d’autre élément plus grand, i.e. si :

V' ey >y=y =y

Attention a ne pas confondre un plus petit élément et un élément minimal. Un plus petit
élément est plus petit que tout le monde, un élément minimal n’est plus grand que
personne. Pour les ordres totaux les deux coincident, mais ce n’est pas le cas en général.

Exercice 4

Pour les ensembles ordonnés suivants, donnez les éléments minimaux, et les plus petits
éléments :

— N muni de l'ordre < naturel
— R™ muni de 'ordre < naturel

— (N\ {1} 1)

— P(X) \ {0} muni de I'inclusion C, olt X est un ensemble quelconque.

Proposition 3

Soit (X, <) un ensemble ordonné et Y C X une partie admettant un plus petit élément.
Alors, ce plus petit élément est unique, et on le note min(Y)

Démonstration. Si y,1y’ sont deux plus petits éléments de Y, alors y € Y et 3/ € Y. Donc,
y <y ety <y, et par antisymétrie, y = y'. D’ou I'unicité.]

MP2I Pierre de Fermat 2025-2026 4

1. RELATIONS, ORDRES

Proposition 4

Soit (X, <) un ensemble totalement ordonné et Y C X, alors, tout élément minimal de Y’
est un plus petit élément de Y. En particulier, Y n’admet qu’au plus un élément minimal.

Démonstration. Soit y élément minimal de Y. Alors y € Y, et siz € Y
y, alors z n’est pas inférieur a y, et donc comme 'ordre est total, y < z. Donc, y < 2z pour tout
ze€Y etyeY :yest un plus petit élément de Y. O

Les propriétés précédentes s’appliquent aussi aux éléments maximaux et aux plus grands
éléments.

Définition 8

Soit (X, <) un ensemble ordonné et Y C X. Si 'ensemble des minorants de Y admet
un plus grand élément, on dit que c’est la borne inférieure de Y. De méme, on dit qu’'un
élément de X est la borne supérieure de Y si c’est le plus petit des majorants de Y (sous
réserve d’existence). Lorsque les bornes de Y existent, on les note inf(Y") et sup(Y’), et elles
vérifient donc :

Vme X,(VyeY,m <y)=m <inf(Y)
VMeX,(VyeY,M>y)= M >sup(Y)

Une propriété fondamentale de la borne inférieure est que tout autre minorant lui est
inférieur. En particulier, si m est un minorant de Y et m > inf(Y) alors m = inf(Y’). Idem
pour la borne supérieure.

Exemple 2

On considere Y = {U%—n\@ | n € N}, 'ensemble des écritures décimales tronquées de v/2. Y
admet une borne supérieure dans R, v/2, mais pas dans Q. Notons que v/2 ¢ Y : la borne

supérieure d'un ensemble n’en fait pas forcément partie.

Exercice 5

Soit (X, <) un ensemble ordonné et Y un ensemble admettant un plus petit élément a. Que
dire de la borne inférieure de Y 7

5 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

D Ordre lexicographique, ordre produit

Un exemple fondamental d’ordre : l'ordre lexicographique. On rappelle que pour ¥ un

ensemble fini non vide, on note ¥* = (J, .y X" l'ensemble des mots finis sur X. On note ¢
I'unique élément de °.

Siu € 3", on le note u = ujusy . .. u, et on appelle uq, ..., u, les lettres de u. On note |u| =n

sa taille.

MP2I Pierre de Fermat 2025-2026

On note u.v la concaténation de deux mots u,v € ¥*, c’est a dire le mot w de taille |u| + |v|
tel que w; = u; pour 1 < j < |uf et wj = vj_jy sij > |ul.
Définition 9

Siu,v € ¥* sont tels que v = u.w pour un certain w € ¥*, alors on dit que u est un préfize
de v. On dit que c’est un préfixe strict si de plus u # v.

Définition 10

Si (X, <y) est un ensemble ordonné, alors on définit 1'ordre lexicographique <., sur 3*
comme suit : soient u, v € X*. u <j., v si et seulement si I'une des deux conditions suivantes
est satisfaite :

— u est un préfixe de v

— Il existe j € N* avec j < |u|,j < |v]| tel que u; < vj et uy, = v;, pour tout k € [1,5—1].

L’ordre lexicographique correspond a l'ordre alphabétique : on compare d’abord la premiere
lettre des deux mots, et si elles sont égales on passe a la deuxieme, et ainsi de suite.

Exercice 6

Montrer que cette relation est bien un ordre sur >*, que c’est un ordre total, et qu’elle
admet le mot vide € comme plus petit élément.

Exemple 3

Si X est 'alphabet latin minuscule, avec l'ordre a < b < c... < z alors 'ordre lexicogra-
phique est simplement ’ordre alphabétique.

On a par exemple a < aa < aaa < a'*® < ab < ba.

Exercice 7

Q1. On considere I'alphabet ¥ = {a,b} avec 'ordre a < b. On munit >* de l'ordre
lexicogaphique, et on considere A = {a" | s € N} C 3* I’ensemble des mots constitués

uniquement de a. A possede-t-il un plus grand élément ? Et une borne supérieure dans
*7?

Définition 11
Soient (X1, <4),..., (X, <,) des ensembles ordonnés.

— On appelle également ordre lexicographique sur X, x---x X, I'ordre <, suivant :
Six=(x1,...,2,) et y = (y1,...,yn) sont des éléments de X; x --- x X, alors z <y
si x = y ou bien si

620

1. RELATIONS, ORDRES

di € [[17n]],$i <y et V< i,;pj =y,

Par exemple, sur N x N, avec cet ordre, on a (2,30) < (3,6) car 2 < 3, et (2,30) <
(2,35) car 2 =2 et 30 < 35.

— On appelle ordre produit sur X; X - --x X, l'ordre <,,,q suivant : Si x = (21, ..., z,)
et y = (Y1,...,Yn) sont des éléments de X; x --- x X,,, alors

T <z yeVie[l,n],x; <y

Proposition 5

L’ordre produit et I'ordre lexicographique sont des relations d’ordres totales.

E Ordre bien fondé

Dans cette partie, on pose (X, <x) et (Y, <y) deux ensembles ordonnés. On notera <y et
<y les ordres stricts correspondant. Ainsi, pour x, 2’ € X, x <y 2’ & v <x 2’ et x # 2’

Définition 12

— Une fonction f : X — Y est croissante ssi Vi, 20 € X, 11 <x w3 = f(21) <y
f(1’2)
— Une fonction f: X — Y est strictement croissante ssi Vri, x5 € X, 11 <x 19 =

f(z1) <y f(z2).
On étend ces définitions aux suites de X" vues comme fonctions de (N, <y) — (X, <x),
ou <y est 'ordre naturel sur N. Un suite (z,)peny € X N est donc croissante si et seulement
Vn<meN, x, <x x,.

Exemple 4

On note | la relation de divisibilité sur N. C’est une relation d’ordre, mais 'ordre n’est pas
total : 2 et 3 ne sont pas comparables. On considere les fonction suivante :

(N, <) — (N%])

f: T — T
o) — (v
oz —

f n’est pas croissante, car 2 < 3 mais 2 ne divise pas 3. En revanche, g est croissante :
si z,y € N* et x|y, alors x < y.

Exercice 8

Soit f: X — Y strictement croissante.

Q1. On suppose que 'ordre sur X est total. Montrez que f est injective.

Q2. Trouver un contre-exemple lorsque X n’est pas total.

7 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Définition 13

minimal.

Proposition 6

On dit que l'ordre <y est bien fondé ssi toute partie A C X non vide admet un élément

Un ordre (X, <x) est bien fondé ssi il n’existe aucune suite strictement décroissante de X

Démonstration. Montrons le résultat par double implication. On consideére un ordre (X, <x)

= On suppose que (X, <x) est bien fondé. Supposons par I'absurde qu’il existe une suite
(tn)nen € XV strictement décroissante. On pose A = {u,|n € N}. A # 0 donc A possede
un élément minimal. Notons ny € N tel que wu,, = min(A). Par décroissance stricte,

Upg+1 < Upy, €t par minimalité, u,, < u,,+1 : d’olt la contradiction.

< Par contraposée, on suppose que 'ordre n’est pas bien fondé. A n’est pas nul, on pose
donc ag € A quelconque. ag n’est pas minimal dans A, donc il existe a; € A tel que
a1 < ag. a; n’est pas minimal dans A, donc il existe ay € A tel que as < a;. Ainsi de

suite, on peut construire une suite (a,)nen strictement décroissante dans A.E]

Exercice 9
Pour chacun des ordres suivants, dire s’il est bien fondé :

1. Cette étape utilise sans le dire 'axiome du choix.

MP2I Pierre de Fermat 2025-2026

O

1. RELATIONS, ORDRES

Proposition 7
Soit (X1, <4),...,(X,, <,) des ensembles bien fondés. Alors :

— L’ensemble X; x --- x X,, muni de I'ordre produit est bien fondé.

— L’ensemble X; x --- x X,, muni de 'ordre lexicographique est bien fondé

Démonstration. Nous avons déja vu que ces relations sont des ordres.

— Notons <p l'ordre produit sur X; x --- x X,,. On suppose par ’absurde que ce n’est
pas un ordre bien fondé. Alors, par propriété des ordres bien fondés, il existe une suite
(Y)ken € (X1 X - -+ x X,,)N strictement décroissante. Pour k € N, notons y; = (z,...27).
Alors, la suite (z})ren est strictement décroissante. En effet, pour k& € N, yp1 <p i,
donc zj ., <; «}, pour i € [1,n]. Donc en particulier z,, <; x;. Or, l'ordre (X1, <) est
bien fondé, ce qui fournit une contradiction.
Donc, <p est bien fondé.

— Notons <y, I'ordre lexicographique sur X; x- - - x X,,. On suppose par ’absurde que ce n’est
pas un ordre bien fondé. Alors, par propriété des ordres bien fondés, il existe une suite
(Y)ken € (X1 X -+ x X,)N strictement décroissante. Pour k € N, notons y = (z,...27).
L’ensemble {z|k € N} est non vide, et donc admet un plus petit élément a’, car (X7, <;)
est bien fondé. Notons k1 € N tel que z;, = a'. Par décroissance, z), = a' pour k > k;.

L’ensemble {zi|k > k;} est non vide, et admet donc un plus petit élément a?. Notons
ks > ki € N tel que z}, = a®. Par décroissance, =} = a* pour k > ky. Donc, pour k > ks,
ri = a' et 13 = a?

On définit ainsi de suite ky, ko, ...k, € Net a' € X;...a, € X,, tels que pour j € [1,n],
pour k > kj, onaxi:al,...,xf;:aj.

En particulier, pour k > k,, onay, = (a',...,a"), lasuite (y;)x n’est donc pas strictement

décroissante : on aboutit & une contradiction.

]

En revanche, si (X, <) est un ordre bien fondé, 3* muni de I'ordre lexicographique n’est pas
nécessairement bien fondé (Cf TD).

Une premiere utilité des ordre bien fondés est de montrer la terminaison d’une fonction
récursive, en généralisant le principe de descente infinie de Fermat. En effet :

Proposition 8

Si f est une fonction récursive, définie sur un ensemble X muni d'un ordre < bien fondé,
et que pour tout = € X, lappel a f(x) cause des appels récursifs f(x1),..., f(xr) avec
r1<x,...,x, < x, alors la fonction termine.

En effet, si la fonction ne terminait pas, on pourrait trouver une suite d’appels récursifs
infinie, et donc trouver une suite strictement décroissante dans X. On verra dans la prochaine
section comment formaliser cette idée.

9 MP2I Pierre de Fermat 2025-2026

1. RELATIONS, ORDRES

Exemple 5

On considere les fonctions suivantes :

1 | (* Nombre de 1 dans 1l'écriture en base 3 de x
2 pour x entier positif ou nul *)

3 |let rec uns_base_3 x = assert (x >=0);
4 if x = 0 then 0 else

5 match x mod 3 with

6 | 1 -> uns_base_3 (x/3) + 1

7 | _ -> uns_base_3 (x/3) ;;

8

9 |let rec pged x y =

10 assert (x>=0 && y >= 0);

11 assert (x>0 || y > 0) ;

12 match (x, y) with

13 | (0, a) | (a, 0) -> a

14 | _ -> if x > y then pgcd (x-y) x

15 else pged x (y-x);;

Montrons que la fonction termine. On remarque que si z > 0, alors appel

récursif causé par se fait sur une entrée 2’ > 0 avec 2’ < x. Donc, N étant

bien fondé, la fonction termine sur toutes les entrées positives. De plus, 'assertion garanti
la terminaison pour les entrées strictement négatives.

Appliquons le méme schéma a la fonction . En prenant en compte les assertions,
on se restreint aux entrées dans F = (N x N)\{(0,0)}. On munit cet ensemble de l'ordre
lexicographique. On remarque ainsi que chaque appel a causant un appel récursif le
fait sur une entrée strictement inférieure selon cet ordre. En effet, pour (z,y) € N* :

— Siz >yalorsx —y >0, donc (z —y,z) € E, et (x —y,x) < (z,y) car y > 0
— Sinon, alors (x < y),doncy —x >0, et (z,y —z) < (z,y) car x > 0.

Donc, la fonction termine.

Proposition 9

Soit X un ensemble quelconque et (Y, <y) un ensemble bien fondé. Soit f : X — Y On
définit la relation R sur X par :

Vo, 2’ € X, 2Rx' & f(z) < f(2)
Alors (X, R,) est un ordre, et il est bien fondé (Rappel : R, est la cloture réflexive).

Démonstration. Montrons que R, est une relation d’ordre : Exercice

Montrons que c’est un ordre bien fondé. Supposons par 'absurde qu’il existe une suite
(Tp)nen € X strictement décroissante. Donc, pour tout n € N, x, Rz, 1. Donc par définition
de R, pour tout n € N, f(z,) < f(z,11). Alors, la suite (f(x,))nen € YN est strictement
décroissante : c’est absurde car Y est bien fondé. O

MP2I Pierre de Fermat 2025-2026 10

1. RELATIONS, ORDRES

Cette derniere propriété permettra de généraliser la notion de variant de boucle. Lorsque

l'on

étudie une fonction récursive, définie sur un ensemble X, un schéma classique de preuve

de terminaison sera :

1.

Exhiber un sous-ensemble Xy C X d’entrées valides (typiquement, cet ensemble sera
donné par les préconditions, les hypotheses, les assertions)

2. Exhiber une fonction f: Xo — Y ou Y est muni d’un ordre bien fondé

3. Montrer que tout appel sur une entrée x € X, cause uniquement des appels récursifs sur

O O UL W N+

e
N = OO

des entrées ' € X, avec f(2') < f(z)

Exemple 6

On considere les fonctions suivante :

let rec £ 1 = match 1 with
| [1 -> failwith "liste vide"
| [x] -> x
| x::y::q => £ ((max x y)::q)

let rec g (11, 12) =
match (11, 12) with
| [1, _ -> somme 12
| x1::q1, [0 -> g ([1,g (q1, (x1+1)::q1)::ql)
| x1::q1, x2::92 -> g ((x1+x2)::q1, 92)

0

— Pour f : On considere 'ensemble des listes non vides Xj. Les appels récursifs causés
par 'appel de f sur une liste non vide se font également sur des listes non vides. On
considere la fonction L : | + |l| qui associe a une liste sa longueur. Cette fonction
est a valeurs dans N, qui est bien fondé, et les appels récursifs font décroitre L(l)
strictement. Donc, la fonction termine.

— Pour g : On considere la fonction L : (I1,13) — (|l1], |l2]). L est & valeur dans N2, que
I’on munit de 'ordre lexicographique. Cet ordre est bien fondé, et les appels récursifs

causés par f sont tels que pour (ly,[l3) deux listes, tout appel récursif
causé par vérifie L(11,1,) < L(ly,12).
On a donc trouvé une fonction sur les entrées dont la valeur décroit strictement a

chaque appel récursif, et qui est a valeur dans un ensemble ordonné bien fondé : la
fonction termine.

11 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

2 Induction

Le raisonnement par induction va permettre de généraliser le principe de récurrence. On
rappelle le principe de récurrence faible :

Proposition 10

Soit. P une propriété sur N, telle que :
— P(0)
— Vn eN,P(n) = P(n+1)

Alors, Vn € N, P(n).

Démonstration. On considere A = {n € N | P(n) est fausse}. On suppose par I’absurde que A
est non-vide. A C N donc A admet un élément minimal ng. ng # 0 car P(0) est vraie. Donc,
no — 1 € N et par minimalité, P(ng — 1) est vraie. Donc, P(ng) est vraie : absurde. O

On a plus généralement le principe de récurrence forte :

Proposition 11
Soit P une propriété sur N, telle que : Vn € N, (Vk < n, P(k)) = P(n). Alors, Vn € N, P(n).

Ce principe signifie que si une propriété est telle qu’en la supposant vraie pour tous les
entiers inférieurs a n, alors elle est vraie pour n également, alors cette propriété est vraie pour
tous les entiers.

A Induction bien fondée

Proposition 12: Principe d’induction bien fondée

Soit (X, <) un ensemble ordonné non vide et P une propriété sur X. Alors, si < est bien
fondé, on a :

Vezezx,(Vye X,y<z="P(y) = Plx)) =Vre X, Px)

Démonstration. Notons Zp(x) : (Vy € X,y <z = P(y)) = P(z)). Zp(x) signifie : “si P est
vraie sur tous les éléments inférieurs a x, alors P est vraie sur z*.
Il faut montrer que si Zp(z) est vraie pour tout x € X, alors P(x) est vraie pour tout z € X.

Supposons Vo € X, Zp(x). On considere A = {x € X | P(x) est fausse}. On suppose par
I’absurde que A est non-vide. A C X et l'ordre est bien fondé, donc A admet un élément
minimal xy. Par contraposée de Zp(zy), il existe y € X avec y < x et P(y) fausse. Alors, y € A,
et par minimalité de z, on n’a pas y < x, ce qui est absurde. 0

Cette propriété généralise le principe de récurrence a tous les ensembles bien fondés.

Le principe d’induction dit donc que pour montrer que P est vraie sur tout X, il suffit de
montrer que Zp est vraie sur tout X.

Par exemple, pour l'ordre naturel sur N, le principe d’induction dit que pour prouver une
propriété P sur N, il faut prouver que pour n € N, si P(k) est vraie pour k < n, alors P(n) est
vraie : ¢’est bien le principe de récurrence forte! On remarque que pour montrer Zp(0), il faut
directement montrer P(0), car 0 n’a aucun prédécesseur.

MP2] Pierre de Fermat 2025-2026 12

2. INDUCTION

Utilisons ce principe pour étudier quelques fonctions. Reprenons la fonction de pged vue
plus haut :

let rec pged x y =
assert (x>=0 && y >= 0);
assert (x>0 || y > 0) ;
match (x, y) with
| (0, a) | (a, 0) > a
| _ => if x > y then pgcd (x-y) x
else pged x (y-%);;

N O U W N

Montrons que cette fonction réalise bien le pged. Pour n,m € N deux entiers, avec (n,m) #
(0,0), on note n A m le pged de n et m.

On induit N x N de I'ordre lexicographique. Montrons par induction sur (n,m) :

Y(n,m) € (N x N\{(0,0)}, P(n, m) : pged(n,m) = n Am
On considere donc (n,m) € (N xN)\{(0,0)}, et on suppose que pour tout couple (n',m’) €
(N x N)\{(0,0)} avec (n',m’) < (n,m), la propriété P(n',m’) est vraie.
— Sin =0, pged(n,m) =m = 0 A m, la propriété est vraie
— Sim =0, pged(n,m) =n =n A0, la propriété est vraie
— Sinon, si n > m alors n —m > 0, et comme m > 0, n — m < n. Donc, par hypothese
d’induction, P(n —m,n) est vraie. Donc pged(n,m) = pged(n —m,n) = (n—m)An =
nAm

— Sinon, alors n < m, et comme n > 0, m —n < m. Donc, par HI, P(n,m — n) est vraie.
On conclut de maniere analogue au cas précédent.

Au dernier chapitre, nous avons montré formellement la correction de fonctions sur les listes,
en raisonnant par récurrence sur la taille des listes. On peut aussi raisonner directement par
induction sur les listes, on considérant 'ordre induit par la longueur des listes. On rappelle le
code du tri fusion :

let rec separer 1 = match 1 with
001 ->a,
| x::y::q => let (11, 12) = separer q in (x::11, y::12)

rec fusionner 11 12 = match 11, 12 with
00,111, 0 ->1
| x1::q1, x2::92 -> if x1 < x2 then x1 :: fusionner gl 12

0 O Uik WK
'_l
0]
ct

else x2 :: fusionner 11 g2
9
10 |let rec tri_fusion 1 = match 1 with
11 (I I B U > i
12 | _ -> let 11, 12 = separer 1 in
13 let 11, 12 = tri_fusion 11, tri_fusion 12 in
14 fusionner 11 12

Montrons formellement la correction de :

On note L ’ensemble des listes. On munit L de l'ordre induit par la fonction taille : L — N.
Cet ordre est bien fondé. On munit ensuite L? de I'ordre lexicographique, lui aussi bien fondé.

Terminaison : On remarque que les entrées décroissent strictement a chaque appel récursif :
la fonction termine.

13 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

Correction : On pose P(ly,ls) : Si l; et Iy sont triées, alors fusionner(ly,l,) est triée et
contient les éléments de [y et [5.
Montrons par induction sur L? que

V(ly, 1) € L?, P(ly, 1)
On considere donc Iy, [, deux listes triées.
e Si [y est vide, alors fusionner(ly,ly) = I3, donc la propriété est vérifiée
e Si I, est vide, alors fusionner(ly,ly) = Iy, donc la propriété est vérifiée
e Si aucune des deux listes est vide, alors [y = x1 :: g1 et Iy = 5 :2 @o.

— Si 21 < x5 : par hypothese d’induction, P(qi,ls) est vraie car (qi,ls) < (l1,02). De
plus, ¢; est triée. Donc fusionner(q;,l) contient les éléments de ¢; et Iy, et est
triée. De plus, x; est ’élément minimal de [;, et est inférieur a xo qui est 1’élément
minimal de l5. Donc, x; est inférieur a tous les éléments de fusionner(q;, [5), et donc
fusionner(ly,[y) = z; :: fusionner(ql,[y) est bien triée, et contient les éléments de
l1 et l5. La propriété est bien vérifiée.

— Sinon, le raisonnement est analogue

Ainsi, la propriété est vraie pour toute paire de listes, et donc la fonction est correcte.

Exercice 10

Montrer de la méme maniere la correction du tri fusion. On pourra admettre la correction
de la fonction de séparation de liste.

MP2] Pierre de Fermat 2025-2026 14

—_ =

2. INDUCTION

B Construction d’un ensemble par induction

Counsidérons le code suivant :

type couleur =
| Rouge
| Jaune
| Bleu
| Melange of couleur*couleur;;

(* Renvoie la fraction de la couleur primaire cp présente dans c *)
let rec frac_primaire cp c =
match ¢ with
| Rouge | Jaune | Bleu -> if ¢ = cp then 1. else O.
| Melange (cl, c2) -> 0.5 x. frac_primaire cp cl +. 0.5 *. frac_primaire cp c2 ;;

— O © 00O Uik Wi+

De quel ordre bien fondé munir ’ensemble de définition de cette fonction pour y appliquer
les résultats précédents ? Plus généralement, quel est 'ensemble mathématique qui représente

le type [couteur]?

Les ensembles définis par induction vont permettre de représenter les types somme en

OCaml : les listes, le type [couleur], etc...

Définition 14

Une régle de construction est un triplet (C,r, P) ou :

— (' est un symbole, appelé constructeur
— r est un entier, appelé arité

— P est un ensemble

Si r = 0 on parle de regle de base, sinon de regle d’induction.

Une regle de construction correspondra a un constructeur d’un type OCaml, et donc un
type, qui est une liste finie de constructeurs, correspondra a une liste finies de regles.
Par exemple, on considere le type OCaml suivant :

type boisson =
| Eau
| Jus of string
| Melange of boisson * boisson * float ;;

ISNUUR Ol

Il est représenté par trois regles de constructions :
— (Eau, 0, {e}), ou {e} est un ensemble singleton
— (Jus, 0,%*) ou X est 'ensemble des caracteres ASCII
— (Melange, 2, R)

L’arité correspond donc au nombre de parametres récursifs que nécessite le constructeur, et
I’ensemble P d’une regle correspond aux autres parametres, ceux qui ne sont pas récursifs.

Exercice 11

Soit A un ensemble. Donner deux regles de constructions permettant de représenter les
listes d’éléments de A.

15 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

Définition 15
Soit C un ensemble de regles de constructions, dont tous les symboles de constructeurs sont
distincts. On note B 'ensemble des regles de base, et Z I’ensemble des regles d’induction.
On définit :
— Xo={(C,p)|(C,0,P) € B,p € P}
— PourneN, X, = X, U{(C,p,z1,...,2.)|(C,r,P) €L, p€ P, (xy,...,2,) € X"}

On note ensuite X la limite des ensembles X, :

X:UXn

neN

On dit que X est l’ensemble construit par induction a partir de C.

Exemple 7

Reprenons le type [boisson]. On a donc :

¢ = {(Eau,0,{s}),(Jus,0,5*), (Melange, 2,R)}
B = {(Eau,0,{e}), (Jus,0,x*)}
Z = {(Melange,?2,[0,1])}

Que contient X 7 On commence par regarder le contenu des différents X,, pour n € N.

— X, contient (Eau, e), (Jus, ”orange”), (Jus, " fraise”), (Jus, "goyave”), On les no-
tera simplement Eau, Jus(”orange”), Jus(” fraise”), Jus(” goyave”).
— X contient tous les éléments de X ainsi que :
— Melange(Eau, Eau, 0.5)
— Melange(Eau, Jus(”fraise”), 0.87)
— Melange(Jus(”framboise”), Jus(”pomme”), 0.97)

— X5 contient tous les éléments de X ainsi que :
— Melange(Melange(Eau, Jus(”fraise”), 0.87), Jus(”pomme”), 0.14)

Il apparait que X, permet de représenter ’ensemble des valeurs OCaml du type
ayant une “profondeur” de récursivité d’au plus n, et X représente les valeurs OCaml du

type de profondeur finie quelconque.

C Induction structurelle

Dans la suite, on considere X un ensemble construit par induction a partir de C = BUZ.
On identifiera une regle C' = (S, r, P) avec son symbole S, et on supposera donc que les regles
ont des symboles distincts. On note comme dans la définition :

— Xo={(C,p) | (C,0,P) € B,p€ P}
— PourneN, X,y =X, U{(C,p,z1,...,2,.) | (C,r,P) €L, p€ P,(x1,...,2,) € X}

Il reste maintenant a définir un ordre bien fondé sur X.

MP2I Pierre de Fermat 2025-2026 16

2. INDUCTION

Définition 16

Soit x € X. On appelle hauteur de x 'indice ny minimal tel que x € X,,. On définit donc
la fonction suivante :

N

X —
r +—— min{fneN|z e X,}

h:

Proposition 13
On a:
— Xo={z € X | h(x) =0}
— VneN {ze X |h(z)=n} = X,\Xn1

Définition 17
On définit la relation R sur X par :

Autrement dit, xRy si y est construit a partir de x.

Remarque 2
On aVz,y € X, 2Ry = h(y) > h(x) + 1.

Proposition 14
On note <x la cloture réflexive transitive de R :

<x= U R"

neN

Alors <y est une relation d’ordre, et c¢’est un ordre bien fondé.

Démonstration. <x est transitive et réflexive. Il reste a montrer qu’elle est antisymétrique.
Soient z,y € X tels que x <x y et y <x z. Il existe donc ny, nsy tels que 2Ry et yR™z. On
suppose par 'absurde que x # y. Donc, ny, ne sont non nuls. En itérant la remarque précédente,
on a donc h(y) > h(z) +ny > h(x) et h(z) > h(y) +n1 > h(y). Donc, h(y) > h(x) > h(y) :
absurde.

<x est bien un ordre. De plus, la fonction A : (X, <x) — (N, <) est strictement croissante
et (N, <) est bien fondé : (X, <x) est donc également bien fondé. O

On applique le principe d’induction bien fondé a cet ordre pour faire des preuves sur les
ensembles construits par induction. Ce principe, que I'on utilisera tres souvent pour étudier de
nombreux objets inductifs, s’appelle le principe d’induction structurelle.

En pratique, on n’utilise souvent que les prédécesseurs directs. Plus précisément, on utilisera
la propriété suivante, qui est ’analogue de la récurrence faible sur N :

17 MP2I Pierre de Fermat 2025-2026

Ve,y € X,aRb< 3A(S,r,P)€Z,3p € P,3xy,...,x, € X,Ji € [1,r],y =S(p,x1,...,2,) et z;, =

2. INDUCTION

Proposition 15
Soit P une propriété sur X telle que :
— VY(5,0,P) € B,Yp € P, P(S(p)) est vraie
— VY(S,r,P) € Z,Vp € PVay,...,x, € X, (Vi € [1,r], P(z;)) = P(S(p, x1,...,2,))
Alors, P(x) est vraie pour tout = € X.

Autrement dit, si une propriété est vraie sur tous les éléments construits avec les construc-

teurs de base, et qu’elle se transmet bien via les constructeurs inductifs, alors elle est vraie sur
tout X.

Pour voir comment 1'utiliser dans une preuve, il nous faut pouvoir définir des fonctions par
induction, afin d’exprimer des propriétés dessus.

D Fonctions définies par induction

Pour définir sur X une fonction par induction, il faudra définir d’une part son comporte-
ment sur les constructeurs de bases, et d’autre part son comportement sur les constructeurs
inductifs. On pourra définir les fonctions inductives de maniere similaire a ce que 'on fait en
OCaml avec les let rec et les match with.

Par exemple, on considere le type OCaml des listes d’entiers :

1 |type liste = ListeVide | ListeNonVide of int * liste ;;

On considere donc ’ensemble Liste construit par induction a partir des regles suivantes :
— (ListeVide, 0,). On notera [] = ListeVide(e).
— (ListeNonVide, 1,N). On notera n :: ¢ = ListeNonVide(n,q).
On considere ensuite la fonction len définie comme suit :
— len([]) =0
— Pour n € N, ¢ € Liste, len(ListeNonVide(n, q)) = 1 + len(q)

Cette fonction correspond a la longueur d’une liste. On I'a définie par induction en
définissant son comportement sur chacun des deux constructeurs de I’ensemble Liste.
Montrons maintenant par induction sur la structure des listes la propriété suivante : VI €
Liste, len(l) > 0.
Il y a deux cas :
— 1 =]. Alors, len(l) = 0 : la propriété est vérifiée
— [=mn : qgavec n € N, ¢ € Liste. On suppose par induction que len(q) > 0. Alors,
len(l) =1+ len(q) > 0 : la propriété est vérifiée.

Ainsi, par induction structurelle, VI € Liste, len(l) > 0.

MP2I Pierre de Fermat 2025-2026 18

2. INDUCTION

E Méthode de preuve par induction structurelle

Lorsqu’on a un ensemble construit X par induction a partir de n constructeurs C4, ..., C,,
et que l'on doit faire une preuve par induction sur cet ensemble, on suivra le schéma suivant :

1. On annonce la preuve : “Montrons par induction structurelle sur X la propriété suivante :
Ve e X, P(x) "

2. On annonce le nombre de cas, i.e. le nombre de constructeurs : “Il y a n cas :”

3. Pour chaque cas, on fait I’étape d’induction correspondante : “x = Cy(p,z1,...,T,),
supposons par induction que P(zy),..., P(z,) sont vraies. Alors ...”

4. Une fois chaque cas traité, on conclut : “Ainsi, par induction structurelle, Va, P(x)”.

Exercice 12

On considere 'ensemble £ des expressions arithmétiques, défini par induction avec les
constructeurs suivants :

— (Const, 0,N) : représente les constantes entieres

— (Add, 2, {e}) : représente la somme de deux expressions

— (Mult, 2, {e}) : représente le produit de deux expressions

— (Puiss, 1,N) : représente une expressions mise a une certaine puissance.
On définit la fonction eval : £ — N par induction structurelle sur £ :

— Vn € N,eval(Const(n)) =n

— Vey,es € €, eval(Add(ey, e2)) = eval(e;) + eval(es)

— Vey,es € €, eval(Mult(eq, e5)) = eval(e;) x eval(es)

— Ve, € €,Va € N,eval(Puiss(e;, a)) = eval(e;)”

Cette fonction évalue une expression en une valeur, donnant aux constructeurs le sens
attendu. On définit également la fonction estNul : £ — B par induction :

— Vn € N,eval(Const(n)) = (0 si n =0, 1 sinon)

— Ve, e € €, estNul(Add(ey, e3)) = (estNul(e;) et estNul(es))

— Vey,es € £, estNul(Mult(ey, e2)) = (estNul(e;) ou estNul(es))
— Ve, € €,Yn € N, estNul(Puiss(ej, a)) = (estNul(e;) et a # 0).

Montrer par induction structurelle sur e € € que eval(e) =0 <= estNul(e).

19 MP2I Pierre de Fermat 2025-2026

2. INDUCTION

F FEtude des fonctions récursives OCaml

On considere deux fonctions calculant la somme d’une liste :

let rec somme 1 = match 1 with
| 1 >0
| x::q -> x + somme q

(* version récursive terminale *)
let rec somme_plus 1 (r: int) : int
| 1 —>r

| x::q -> somme q (x+r)

0O Ui Wi

On note L '’ensemble des listes d’entiers. On montre par induction structurelle sur L :

Vi e L,P(l) : ¥Vr € Z,somme_plus(l,r) = somme(l) + r
Ilya?2cas:
— Pour la liste vide [|, somme_plus([],7) =r =0+ r = somme([]) +r : P([]) est vraie.

— Pour | = z :: q avec x entier et ¢ une liste. On suppose par induction P(q). Alors par
hypothese d’induction somme_plus(q, z + r) = somme(q) + (x + r) = somme(l) + r.
Donc, somme _plus(l,r) = somme(l) + r : P(l) est vraie.

Ainsi, par induction structurelle sur les listes, VI € L, P(l).

Exercice 13

Reprendre la preuve de correction du tri fusion, en utilisant le formalisme de I'induction
structurelle.

MP2I Pierre de Fermat 2025-2026 20

	Relations, ordres
	Induction

