OO UL W N+

R R R R 0 W LW LW W W W W W WNDNDNDNDNDNDNDNDND e e e e e e e
= W NP OOk WNHFE OO Ulk WD O OO0 Ut WwWwNne—O©o

Exercices sur la récursivité

MP2I Lycée Pierre de Fermat

Exercice 1.

Récursivité terminale

(k% Q1 *%)

(* somme des éléments de 1, plus r *)

let rec somme_add (1: int 1list) (r: int) : int =
match 1 with
| 0 >r

| x :: q > somme_add q (x + r)

(* somme des éléments de 1 *)
let somme (1: int list): int =
somme_add 1 O

(kx Q2 *%)
(* on utilise la fonction max: 'a -> 'a -> 'a

qui calcule le maximum de deux éléments *)

(* max des éléments de 1. Précondition: 1 non vide *)

let max_liste (1: 'a list) : 'a =
(* max de m et des éléments de 11 %)
let rec max_elem (11: 'a list) (m: 'a) : 'a =
match 11 with
[[J ->m
| x :: q -> max_elem q (max x m)
in

match 1 with
| [J -> failwith "Max d'une liste vide"
| x :: g -> max_elem q x

(kx Q3 *%)

(x Liste des éléments de 1 qui vérifient p *)
let filter (p: 'a -> bool) (1: 'a list): 'a list =
(* Liste des éléments de 11 qui vérifient p, renversée,
concaténée a accu *)
let rec rev_filter_concat (1: 'a list) (accu: 'a list)
match 1 with
| [1 -> accu

| x :: q >
if p x then rev_filter_concat q (x :: accu)
else rev_filter_concat q accu

in
List.rev (rev_filter_concat 1 [])

(k% Q4 **)

'a list

45
46
47
48
49
50
o1
52
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

(* fusion triée de 11 et 12, renversée, concaténée a accu
* Précondition: 11 et 12 sont triées *)
let rec rev_fusion_concat (11: 'a list) (12: 'a list) (accu: 'a list): 'a list =
match (11, 12) with
| [1, _ => List.rev 12 @ accu
| _, [-> List.rev 11 @ accu
| x1 :: g1, x2 :: g2 —>
if x1 <= x2 then

rev_fusion_concat q1 12 (x1 :: accu)
else
rev_fusion_concat 11 g2 (x2 :: accu)

(x fusion triée de 11 et 12

* Précondition: 11 et 12 sont triées *)

let fusion (11: 'a list) (12: 'a list) : 'a list =
List.rev (rev_fusion_concat 11 12 [])

(kx Q5 *%)

(* couple (11, 12) formant une partition de 1, avec
* - 11 liste des éléments inférieurs ou égaux a p
* - 12 liste des éléments supérieurs strict a p *)
let partition (p: 'a) (1: 'a list) : 'a list * 'a list =
(* partitionne 11 selon p et rajoute les éléments
inférieurs et supérieurs stricts dans les listes
respectives 11 et 12. Renvoie le couple des listes
obtenues. *)
let rec partition_add (11: 'a 1list) (11: 'a list) (12: 'a list) : 'a list * 'a list =
match 11 with
I 00 -> (a1, 12)

| x :: q >
if x <= p then partition_add q (x :: 11) 12
else partition_add q 11 (x :: 12)

in
partition_add 1 [] []

Exercice 2. Correction du tri fusion

Q1. On propose la propriété suivante :

P(n) : “ Pour toutes listes Ly, Ly triées telles que |L;| + |L2| = n, fusion(L;, Ls) est
triée et contient les éléments de L; et Ly.”

Notons qu’on ne peut pas raisonner par récurrence juste sur |L;| ou sur | Ly| car aucune de
ces deux quantités n’est systématiquement strictement décroissante au cours des appels
récursifs, on ne pourrait donc pas appliquer I’hypothese de récurrence.

Q2. Montrons Vn, P(n) par récurrence :
— Initialisation (n = 0) : Soient Ly, Lo triées telles que |Ly|+|La| = 0. Alors, Ly =[] =
Ls. Alors :
quiOIl(Ll, LQ) = H

Cette liste est triée, et contient bien les éléments de L; et Lo, qui sont vides. D’ou
P(0).

— Hérédité : Soit n € N tel que P(n). Soient Ly, Ly triées telles que |Li|+ |La| = n+1.
Trois cas se présentent :

— Si Ly est vide, alors fusion(Ly, Ly) = Ls. C’est bien une liste triée par hypothese,
et elle contient trivialement les éléments de L; (qui est vide) et de Ls.

— Si Ly est vide, c’est analogue.

— Si aucune des deux n’est vide, alors L1 = x1 :: Q1 et Ly = x5 = Q2 avec 1, o
des éléments et Y1, Q)2 des listes. Sans perte de généralité, supposons z; < o,
I’autre cas étant identique. Alors :

fusion(Lq, L) = x; :: fusion(Qy, Ls)

De plus, |Q1|+ |Lz2| = n, donc, par hypothése de récurrence, on a fusion(Q;, Ls)
qui est triée et contient les éléments de (1 et de Lo. Alors, il est clair que
fusion(L;, Ly) contient les éléments de Ly = 7 :: @1 et de L. De plus,
fusion(Q1, L) est triée, et contient uniquement des éléments supérieurs a x;.
En effet, z1 < x9 = min(Ly) car Ly est triée. Ainsi, fusion(L;, Ly) est aussi
triée.

Dans tous les cas, P(n + 1) est vérifiée, d’ou 'hérédité.

D’ou la correction de la fonction fusion.

