
Exercices sur la récursivité

MP2I Lycée Pierre de Fermat

Exercice 1. Récursivité terminale

1 (** Q1 **)

2
3 (* somme des éléments de l, plus r *)

4 let rec somme_add (l: int list) (r: int) : int =

5 match l with

6 | [] -> r

7 | x :: q -> somme_add q (x + r)

8
9 (* somme des éléments de l *)

10 let somme (l: int list): int =

11 somme_add l 0

12
13 (** Q2 **)

14 (* on utilise la fonction max: 'a -> 'a -> 'a

15 qui calcule le maximum de deux éléments *)

16
17 (* max des éléments de l. Précondition: l non vide *)

18 let max_liste (l: 'a list) : 'a =

19 (* max de m et des éléments de ll *)

20 let rec max_elem (ll: 'a list) (m: 'a) : 'a =

21 match ll with

22 | [] -> m

23 | x :: q -> max_elem q (max x m)

24 in

25 match l with

26 | [] -> failwith "Max d'une liste vide"

27 | x :: q -> max_elem q x

28
29 (** Q3 **)

30
31 (* Liste des éléments de l qui vérifient p *)

32 let filter (p: 'a -> bool) (l: 'a list): 'a list =

33 (* Liste des éléments de ll qui vérifient p, renversée,

34 concaténée à accu *)

35 let rec rev_filter_concat (l: 'a list) (accu: 'a list) : 'a list =

36 match l with

37 | [] -> accu

38 | x :: q ->

39 if p x then rev_filter_concat q (x :: accu)

40 else rev_filter_concat q accu

41 in

42 List.rev (rev_filter_concat l [])

43
44 (** Q4 **)

1

45
46 (* fusion triée de l1 et l2, renversée, concaténée à accu

47 * Précondition: l1 et l2 sont triées *)

48 let rec rev_fusion_concat (l1: 'a list) (l2: 'a list) (accu: 'a list): 'a list =

49 match (l1, l2) with

50 | [], _ -> List.rev l2 @ accu

51 | _, [] -> List.rev l1 @ accu

52 | x1 :: q1, x2 :: q2 ->

53 if x1 <= x2 then

54 rev_fusion_concat q1 l2 (x1 :: accu)

55 else

56 rev_fusion_concat l1 q2 (x2 :: accu)

57
58
59 (* fusion triée de l1 et l2

60 * Précondition: l1 et l2 sont triées *)

61 let fusion (l1: 'a list) (l2: 'a list) : 'a list =

62 List.rev (rev_fusion_concat l1 l2 [])

63
64 (** Q5 **)

65
66 (* couple (l1, l2) formant une partition de l, avec

67 * - l1 liste des éléments inférieurs ou égaux à p

68 * - l2 liste des éléments supérieurs strict à p *)

69 let partition (p: 'a) (l: 'a list) : 'a list * 'a list =

70 (* partitionne ll selon p et rajoute les éléments

71 inférieurs et supérieurs stricts dans les listes

72 respectives l1 et l2. Renvoie le couple des listes

73 obtenues. *)

74 let rec partition_add (ll: 'a list) (l1: 'a list) (l2: 'a list) : 'a list * 'a list =

75 match ll with

76 | [] -> (l1, l2)

77 | x :: q ->

78 if x <= p then partition_add q (x :: l1) l2

79 else partition_add q l1 (x :: l2)

80 in

81 partition_add l [] []

Exercice 2. Correction du tri fusion

Q1. On propose la propriété suivante :

P (n) : “ Pour toutes listes L1, L2 triées telles que |L1|+ |L2| = n, fusion(L1, L2) est
triée et contient les éléments de L1 et L2.”

Notons qu’on ne peut pas raisonner par récurrence juste sur |L1| ou sur |L2| car aucune de
ces deux quantités n’est systématiquement strictement décroissante au cours des appels
récursifs, on ne pourrait donc pas appliquer l’hypothèse de récurrence.

Q2. Montrons ∀n, P (n) par récurrence :

— Initialisation (n = 0) : Soient L1, L2 triées telles que |L1|+ |L2| = 0. Alors, L1 = [] =
L2. Alors :

fusion(L1, L2) = []

Cette liste est triée, et contient bien les éléments de L1 et L2, qui sont vides. D’où
P (0).

2

— Hérédité : Soit n ∈ N tel que P (n). Soient L1, L2 triées telles que |L1|+ |L2| = n+1.
Trois cas se présentent :

— Si L1 est vide, alors fusion(L1, L2) = L2. C’est bien une liste triée par hypothèse,
et elle contient trivialement les éléments de L1 (qui est vide) et de L2.

— Si L2 est vide, c’est analogue.

— Si aucune des deux n’est vide, alors L1 = x1 :: Q1 et L2 = x2 :: Q2 avec x1, x2

des éléments et Q1, Q2 des listes. Sans perte de généralité, supposons x1 < x2,
l’autre cas étant identique. Alors :

fusion(L1, L2) = x1 :: fusion(Q1, L2)

De plus, |Q1|+ |L2| = n, donc, par hypothèse de récurrence, on a fusion(Q1, L2)
qui est triée et contient les éléments de Q1 et de L2. Alors, il est clair que
fusion(L1, L2) contient les éléments de L1 = x1 :: Q1 et de L2. De plus,
fusion(Q1, L2) est triée, et contient uniquement des éléments supérieurs à x1.
En effet, x1 < x2 = min(L2) car L2 est triée. Ainsi, fusion(L1, L2) est aussi
triée.

Dans tous les cas, P (n+ 1) est vérifiée, d’où l’hérédité.

D’où la correction de la fonction fusion.

3

