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Exercices sur la récursivité

MP2I Lycée Pierre de Fermat

Exercice 1.

Récursivité terminale

(k% Q1 *%)

(* somme des éléments de 1, plus r *)

let rec somme_add (1: int 1list) (r: int) : int =
match 1 with
| 0 >r

| x :: q > somme_add q (x + r)

(* somme des éléments de 1 *)
let somme (1: int list): int =
somme_add 1 O

(kx Q2 *%)
(* on utilise la fonction max: 'a -> 'a -> 'a

qui calcule le maximum de deux éléments *)

(* max des éléments de 1. Précondition: 1 non vide *)

let max_liste (1: 'a list) : 'a =
(* max de m et des éléments de 11 %)
let rec max_elem (11: 'a list) (m: 'a) : 'a =
match 11 with
[ [J ->m
| x :: q -> max_elem q (max x m)
in

match 1 with
| [J -> failwith "Max d'une liste vide"
| x :: g -> max_elem q x

(kx Q3 *%)

(x Liste des éléments de 1 qui vérifient p *)
let filter (p: 'a -> bool) (1: 'a list): 'a list =
(* Liste des éléments de 11 qui vérifient p, renversée,
concaténée a accu *)
let rec rev_filter_concat (1: 'a list) (accu: 'a list)
match 1 with
| [1 -> accu

| x :: q >
if p x then rev_filter_concat q (x :: accu)
else rev_filter_concat q accu

in
List.rev (rev_filter_concat 1 [])

(k% Q4 **)

'a list
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(* fusion triée de 11 et 12, renversée, concaténée a accu
* Précondition: 11 et 12 sont triées *)
let rec rev_fusion_concat (11: 'a list) (12: 'a list) (accu: 'a list): 'a list =
match (11, 12) with
| [1, _ => List.rev 12 @ accu
| _, [ -> List.rev 11 @ accu
| x1 :: g1, x2 :: g2 —>
if x1 <= x2 then

rev_fusion_concat q1 12 (x1 :: accu)
else
rev_fusion_concat 11 g2 (x2 :: accu)

(x fusion triée de 11 et 12

* Précondition: 11 et 12 sont triées *)

let fusion (11: 'a list) (12: 'a list) : 'a list =
List.rev (rev_fusion_concat 11 12 [])

(kx Q5 *%)

(* couple (11, 12) formant une partition de 1, avec
* - 11 liste des éléments inférieurs ou égaux a p
* - 12 liste des éléments supérieurs strict a p *)
let partition (p: 'a) (1: 'a list) : 'a list * 'a list =
(* partitionne 11 selon p et rajoute les éléments
inférieurs et supérieurs stricts dans les listes
respectives 11 et 12. Renvoie le couple des listes
obtenues. *)
let rec partition_add (11: 'a 1list) (11: 'a list) (12: 'a list) : 'a list * 'a list =
match 11 with
I 00 -> (a1, 12)

| x :: q >
if x <= p then partition_add q (x :: 11) 12
else partition_add q 11 (x :: 12)

in
partition_add 1 [] []

Exercice 2. Correction du tri fusion

Q1. On propose la propriété suivante :

P(n) : “ Pour toutes listes Ly, Ly triées telles que |L;| + |L2| = n, fusion(L;, Ls) est
triée et contient les éléments de L; et Ly.”

Notons qu’on ne peut pas raisonner par récurrence juste sur |L;| ou sur | Ly| car aucune de
ces deux quantités n’est systématiquement strictement décroissante au cours des appels
récursifs, on ne pourrait donc pas appliquer I’hypothese de récurrence.

Q2. Montrons Vn, P(n) par récurrence :
— Initialisation (n = 0) : Soient Ly, Lo triées telles que |Ly|+|La| = 0. Alors, Ly =[] =
Ls. Alors :
quiOIl(Ll, LQ) = H

Cette liste est triée, et contient bien les éléments de L; et Lo, qui sont vides. D’ou
P(0).




— Hérédité : Soit n € N tel que P(n). Soient Ly, Ly triées telles que |Li|+ |La| = n+1.
Trois cas se présentent :

— Si Ly est vide, alors fusion(Ly, Ly) = Ls. C’est bien une liste triée par hypothese,
et elle contient trivialement les éléments de L; (qui est vide) et de Ls.

— Si Ly est vide, c’est analogue.

— Si aucune des deux n’est vide, alors L1 = x1 :: Q1 et Ly = x5 = Q2 avec 1, o
des éléments et Y1, Q)2 des listes. Sans perte de généralité, supposons z; < o,
I’autre cas étant identique. Alors :

fusion(Lq, L) = x; :: fusion(Qy, Ls)

De plus, |Q1|+ |Lz2| = n, donc, par hypothése de récurrence, on a fusion(Q;, Ls)
qui est triée et contient les éléments de (1 et de Lo. Alors, il est clair que
fusion(L;, Ly) contient les éléments de Ly = 7 :: @1 et de L. De plus,
fusion(Q1, L) est triée, et contient uniquement des éléments supérieurs a x;.
En effet, z1 < x9 = min(Ly) car Ly est triée. Ainsi, fusion(L;, Ly) est aussi
triée.

Dans tous les cas, P(n + 1) est vérifiée, d’ou 'hérédité.

D’ou la correction de la fonction fusion.



