Khôlle de physique 4 Semaine du 06/10/25

M2 DYNAMIQUE

Savoir faire

Tout exercice de dynamique. Pour les équations différentielles du second ordre : oscillateur harmonique uniquement.

- Définir le système, justifier le caractère galiléen d'un référentiel pour une expérience.
- Réaliser un bilan des forces complet : justifier qu'on en néglige certaines, caractériser les autres (direction, sens, expression si connue).
- Obtenir les équations du mouvement à partir de la deuxième loi de Newton.
- Résoudre les équations différentielles linéaires à coefficients constants (avec ou sans second membre) du premier ordre ou second ordre et identifier des durées caractéristiques par analyse dimensionnelle. Pour le second ordre : oscillateur harmonique uniquement!

M3 ÉNERGÉTIQUE DU POINT

Questions de cours

• Définition du travail d'une force et interprétation de son signe, et une application laissée au choix du khôlleur
\Box Déterminer le travail du poids entre deux points A et B .
\Box Déterminer le travail de la force électrostatique (champ électrostatique $\overrightarrow{E} = -\frac{\mathrm{d}V}{\mathrm{d}x}\overrightarrow{u_x}$) entre deux points A et B .
\Box Déterminer le travail de la force gravitationnelle entre deux points A et B .
• Énergie potentielle : définition, lien avec une force conservative, exemple laissé au choix du khôlleur :
☐ énergie potentielle de pesanteur (champ uniforme)
□ énergie potentielle gravitationnelle (champ créé par un astre)
☐ énergie potentielle d'élongation du ressort
• Théorème de l'énergie cinétique : énoncé et démonstration en partant du principe fondamental de la dyna-

- Théorème de l'énergie cinétique : énoncé et démonstration en partant du principe fondamental de la dynamique.
- Théorème de l'énergie mécanique : énoncé et démonstration en partant du théorème de l'énergie cinétique. Corollaire pour un système soumis à des forces conservatives.
- Notion d'équilibre et de stabilité : conditions sur les dérivées de l'énergie potentielle.
- Puits et barrière de potentiel : définitions, explication des possibilités en fonction de la valeur de l'énergie mécanique en s'appuyant sur l'exemple du pendule simple.
- Mouvement harmonique au voisinage d'une position d'équilibre stable.

Savoir faire

On se limitera à des exercices proches du cours en début de semaine.

- Reconnaître le caractère moteur ou résistant d'une force.
- Exploiter le théorème de l'énergie cinétique et ses variantes.
- Établir et citer les expressions des énergies potentielles de pesanteur, de l'énergie potentielle gravitationnelle (champ créé par un astre) et d'élongation d'un ressort.