Khôlle de physique 8 Semaine du 17/11/25

EL3 ÉVOLUTION D'UN CIRCUIT LINÉAIRE

Questions de cours

- V Présentation du condensateur idéal : capacité, relation courant-tension, énergie emmagasinée, modèle réel.
- ♡ Charge du condensateur dans un circuit RC série soumis à un échelon de tension : établissement de l'équation différentielle, solution, allure graphique.
- ♡ Décharge du condensateur dans un dipôle ohmique : établissement de l'équation différentielle, solution, allure graphique.
- 🗸 Présentation de la bobine idéale : inductance, relation courant-tension, énergie emmagasinée, modèle réel.
- ♥ Établissement du courant dans une bobine soumise à un échelon de tension : équation différentielle, solution, allure graphique.
- ♡ Circuit oscillant : établir l'équation différentielle et obtenir la solution pour le circuit idéal LC libre avec un condensateur initialement chargé et un courant initialement nul.
- \heartsuit Circuit oscillant : partant de la solution du régime libre $u_C = U_0 \cos(\omega_0 t)$ faire le bilan énergétique du circuit et interpréter.
- ♡ Circuit oscillant : analogie avec le système idéal masse-ressort.
- \heartsuit Circuit RLC série en régime libre : établir l'équation différentielle et donner les solutions possibles selon la valeur de Q (facteur de qualité)
- \heartsuit Circuit RLC série en régime libre pseudo-périodique : pseudo-pulsation pour Q assez grand, forme des solutions, durée typique d'établissement du régime permanent.
- ♡ Bilan énergétique du circuit RLC série : montrer la dissipation par effet Joule.

Savoir faire

	Établir l'expression de l'énergie stockée dans un condensateur.
	Établir l'expression de l'énergie stockée dans une bobine.
	Déterminer la tension aux bornes du condensateur dans le cas d'une charge ou d'une décharge pour le circuit
	RC série.
	Réaliser un bilan énergétique sur le circuit RC.
	Établir et résoudre l'équation différentielle qui régit l'évolution du courant dans un circuit RL série.
	Déterminer un ordre de grandeur de la durée d'un régime transitoire dans le circuit RC ou RL.
	Modèle du circuit RLC série : établissement de l'équation différentielle sous forme canonique
	Identifier la nature du régime libre en fonction de la valeur du facteur de qualité.
	Déterminer un ordre de grandeur de la durée du régime transitoire
	Réaliser un bilan énergétique du circuit RLC
г	
	Tout avarcica cur las circuits linéaires du pramier et second ordre pout être proposé