Programme de colles n°7

semaine du 10 au 14 novembre

Calculs de primitives et d'intégrales

- Définition d'une primitive d'une fonction définie sur un intervalle à valeurs complexes.
- Lien entre intégrales et primitives.
- Description des primitives d'une fonction sur un intervalle connaissant l'une d'entre elles.
- La fonction $x \mapsto \int_{x_0}^x f(t) dt$ est une primitive de f. Pour calculer une primitive on peut calculer une intégrale.
- Intégration par parties.
- Changement de variables.
- Primitives des fonctions classiques : inverse, trigonométrique, hyperboliques, puissances, exponentielles, logarithmes, $x\mapsto \frac{1}{1+x^2},\,x\mapsto \frac{1}{\sqrt{1-x^2}}.$
- Primitives de $x \mapsto e^{\lambda x}$ pour $\lambda \in \mathbb{C}$. Application aux primitives de $x \mapsto e^{ax} \cos(bx)$ et $x \mapsto e^{ax} \sin(bx)$.
- Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$.

Les démonstrations suivantes sont à connaître (les autres démonstrations ne sont pas censées être ignorées totalement) :

- Trouver une primitive de ln.
- Trouver une primitive de $x \mapsto (x+1)\sin(x)$ (exercice de cours).
- Trouver une primitive de $x \mapsto x \operatorname{Arctan}(x)$ (exercice de cours).
- Calculer $\int_0^t \sqrt{1-x^2} \, dx$ où $t \in [-1;1]$ (exercice de cours).

Les points suivants sont à savoir particulièrement bien faire :

- Calculer une primitive par un calcul d'intégrale.
- Calculer les primitives de $x \mapsto e^{ax} \cos(bx)$ et $x \mapsto e^{ax} \sin(bx)$ en considérant $x \mapsto e^{\lambda x}$ où $\lambda \in \mathbb{C}$.
- Calculer les primitives de $\cos^m \sin^n$ en linéarisant.
- Calculer les primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ et $x \mapsto \frac{\alpha x + \beta}{ax^2 + bx + c}$.
- Reconnaître les dérivées de fonctions composées.

Nombres réels

- Entiers relatifs, relatifs, nombres décimaux, rationnels, irrationnels, réels.
- Tout intervalle ouvert non vide de \mathbb{R} rencontre \mathbb{Q} et $\mathbb{R}\backslash\mathbb{Q}$.
- Droite réelle achevée.
- Partie entière (inférieure)
 - o Définition.
 - Caractérisation (pour $x \in \mathbb{R}$ et $n \in \mathbb{Z}$ on a n = |x| ssi $n \le x < n + 1$).
 - o Approximations décimales (valeurs approchées par excès ou par défaut à 10^{-n} près).
 - Tout réel est limite d'une suite de rationnels et d'une suite d'irrationnels.
- Bornes inférieures et supérieures.
 - \circ Parties de \mathbb{R} majorées/minorées.
 - o Maximum, minimum.
 - o Bornes supérieure et inférieure.
 - \circ Toute partie non vide et majorée (resp. minorée) de $\mathbb R$ admet une borne supérieure (resp. inférieure) finie.
 - o Si X est une partie non vide et majorée de \mathbb{R} , il existe une suite d'éléments de X de limite $\sup(X)$. Si X est une partie non majorée de \mathbb{R} , il existe une suite d'éléments de X de limite $+\infty$.
- Intervalles de \mathbb{R} .
- Une partie X de \mathbb{R} est un intervalle si et seulement si pour tous $a, b \in X$ tels que $a \leq b$ on a $[a, b] \subset X$.
- \bullet Parties denses de $\mathbb R.$ Définition et caractérisation séquentielle.

Les démonstrations suivantes sont à connaître (les autres démonstrations ne sont pas censées être ignorées totalement) :

- Croissance de la fonction partie entière inférieure.
- Tout réel est limite d'une suite de rationnels.
- Si X est une partie non majorée de \mathbb{R} , il existe une suite d'éléments de X de limite $+\infty$.
- Si X est une partie non vide et majorée de \mathbb{R} , il existe une suite d'éléments de X de limite $\sup(X)$.
- Caractérisation séquentielle de la densité.

Les points suivants sont à savoir particulièrement bien faire :

- Savoir utiliser la définition et la Caractérisation de la partie entière.
- Prouver des inégalités faisant intervenir les bornes supérieures et inférieures.