Programme de colles n°8

semaine du 17 au 21 novembre

Équations différentielles linéaires

- Équations différentielles linéaires du premier ordre : y' + a(x)y = b où a et b sont des fonctions continues sur un intervalle.
 - o Définition, équation homogène.
 - o Cas particulier des équations à coefficients constants.
 - o Forme des solutions : somme d'une solution particulière et de la solution générale de l'équation homogène.
 - o Principe de superposition.
 - o Résolution de l'équation homogène.
 - o Variation de la constante.
 - o Existence et unicité de la solution d'un problème de Cauchy.
- Équations différentielles linéaires du second ordre à coefficients constants.
 - o Définition, équation homogène,...
 - o Forme des solutions : somme d'une solution particulière et de la solution générale de l'équation homogène.
 - o Résolution de l'équation homogène (cas complexe et cas réel).
 - o Théorème de superposition.
 - o Recherche d'une solution particulière dans les cas suivants :
 - * Cas où le second membre est de la forme $x \mapsto p(x)$ où p est un polynôme.
 - * Cas où le second membre est de la forme $x \mapsto A e^{\lambda x}$.
 - * Cas où le second membre est de la forme $x \mapsto B\cos(\omega x)$ et $x \mapsto B\sin(\omega x)$
 - o Existence et unicité de la solution d'un problème de Cauchy (admis).

Les démonstrations suivantes sont à connaître (les autres démonstrations ne sont pas censées être ignorées totalement):

- Équations différentielles linéaires du premier ordre.
 - o Les solutions sont sommes d'une solution particulière et de la solution générale de l'équation homogène.
 - Principe de superposition.
 - o L'ensemble des solutions d'une équation homogène est stable par combinaison linéaire et contient la fonction nulle.
 - o Retrouver l'équation vérifiée par la « constante » dans la méthode de la variation de la constante.
- Équations différentielles linéaires du second ordre à coefficients constants.
 - o Les solutions sont sommes d'une solution particulière et de la solution générale de l'équation homogène.
 - o Principe de superposition.
 - L'ensemble des solutions d'une équation homogène est stable par combinaison linéaire et contient la fonction nulle.

Arithmétique des entiers

Cette semaine: cours uniquement; pas d'exercice.

- Divisibilité dans Z, diviseurs, multiples. Caractérisation des couples d'entiers associés.
- Théorème de la division euclidienne.
- PGCD de deux entiers relatifs dont au moins un est non nul :
 - o Définition.
 - $\circ\,$ Calcul via l'algorithme d'Euclide.

- \circ L'ensemble des diviseurs communs de a et b est égal à l'ensemble des diviseurs de pgcd a, b.
- $\circ a \wedge b$ est le plus grand élément (au sens de la divisibilité) de l'ensemble des diviseurs communs de a et b.
- $\circ \ ac \wedge bc = (a \wedge b) \times c \text{ pour } c \in \mathbb{N}^*.$
- o Relation de Bézout.
- o Détermination d'un couple de Bézout par l'algorithme d'Euclide étendu.
- o Extension à nombre fini d'entiers : PGCD, relation de Bézout.
- ppcm de deux entiers relatifs non nuls :
 - o Définition.
 - $\circ (a \wedge b)(a \vee b) = |ab| \text{ (admis)}$
- Nombres premiers entre eux :
 - o Définition.
 - o Théorème de Bézout.
 - o Lemme de Gauss.
 - o Forme irréductible d'un rationnel.
 - \circ Si a et b sont premiers entre eux et divisent n alors ab divise n.
 - \circ Si a et b sont premiers à n alors ab est premier à n.
 - Généralisation à nombre fini d'entiers : nombres premiers entre eux dans leur ensemble, premiers entre eux deux à deux.
- Nombres premiers :
 - o Définition.
 - o Tout nombre a > 1 admet un diviseur premier p. De plus si a n'est pas premier, on peut prendre $p \leq \sqrt{a}$.
 - o Crible d'Eratosthène.
 - o Il existe une infinité de nombres premiers.
 - o Existence et unicité de la décomposition en produit de facteurs premiers.
- Valuation *p*-adique
 - o Définition.
 - \circ Valuation *p*-adique d'un produit.
 - o Caractérisation de la divisibilité.
 - o Expression du PGCD et du PPCM.
- Congruences
 - \circ Relation de congruence sur \mathbb{Z} .
 - o Opérations : somme et produit.
 - $\circ~$ Utilisation d'un inverse modulo n pour résoudre une congruence modulo n.
 - o Petit théorème de Fermat.

Les démonstrations suivantes sont à connaître (les autres démonstrations ne sont pas censées être ignorées totalement) :

- Correction totale de l'algorithme d'Euclide.
- Résolution de 8x + 6y = 4.
- Tout nombre a>1 admet un diviseur premier p. De plus si a n'est pas premier, on peut prendre $p\leqslant \sqrt{a}$.
- Valuation *p*-adique d'une somme et d'un produit.
- Si p est primier, il divise $\binom{p}{k}$ pour tout $k \in \{1, \dots, p-1\}$; en déduire que pour tout entier n on a $(n+1)^p \equiv n^p + 1$ [p]. Donner l'idée pour finir la preuve du petit théorème de Fermat.

Les points suivants sont à savoir particulièrement bien faire :

- Savoir utiliser la propriété : si d divise a et b alors d divise toute combinaison linéaire (à coefficients entiers) de a et b.
- Trouver des propriétés du PGCD en considérant un diviseur commun.
- Calcul de $a \wedge b$ et $a \vee b$
 - o via l'algorithme d'Euclide et la propriété $(a \wedge b)(a \vee b) = |ab|$,
 - \circ par l'expression à l'aide des valuations p-adiques,
 - \circ s'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1 alors $a \wedge b = 1$.
- Déterminer un couple de Bézout par l'algorithme d'Euclide étendu.
- Si $a \wedge n = 1$, savoir trouver et utiliser un inverse de a modulo n pour résoudre l'équation $ax \equiv b [n]$.
- Savoir rédiger une résolution d'équation par analyse-synthèse.
- Calculs factionnaires :
 - o Savoir réduire une fraction via un calcul de PGCD.
 - o Savoir faire une somme de deux (ou plus) fractions en mettant au même dénominateur via un calcul de PPCM.