D.S. Nº 1 DE MATHÉMATIQUES

Durée : 2 heures. Les calculatrices sont interdites.

On attachera un grand soin à la rédaction. En particulier, chaque résultat ou conclusion devra être encadré. On peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

Exercice 1

On note, pour tout $n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$ et on admet que la suite $(H_n - \ln n)$ converge vers un réel noté γ . On rappelle que $2 < e = \exp(1) < 3$

1. Dresser le tableau des variations de la fonction

$$f:]0, +\infty[\rightarrow \mathbb{R}, x \mapsto \frac{\ln x}{x}]$$

 $f:]0, +\infty[\rightarrow \mathbb{R}, x \mapsto \frac{\ln x}{x}]$
 $f:]0, +\infty[\rightarrow \mathbb{R}, x \mapsto \frac{\ln x}{x}]$

 $f:]0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{\ln x}{x}.$ 2. Quelle est la nature des séries $\sum \frac{\ln n}{n}$ et $\sum (-1)^n \frac{\ln n}{n}$?

3. Montrer que, pour tout $n \geq 3$,

3,
$$\frac{\ln(n+1)}{n+1} \le \frac{1}{2} (\ln(n+1))^2 - \frac{1}{2} (\ln n)^2 \le \frac{\ln n}{n}.$$

Soient, pour chaque n supérieur ou égal à 3,

$$S_n = \sum_{k=2}^n \frac{\ln k}{k}$$
 et $u_n = S_n - \frac{1}{2} (\ln n)^2$.

 \mathbb{Z}_{4} . Déterminer un équivalent de S_n quand n tend vers ∞ . Encadre \mathbb{Z}_{4} Gedares \mathbb{Z}_{4}

5. Montrer que la suite (u_n) est convergente, de deux manières :

2 (a) en utilisant le théorème de la limite monotone; 3 (b) en utilisant une série télescopique. Soit, pour chaque n supérieur ou égal à 3, $T_n = \sum_{k=2}^{n} (-1)^k \frac{\ln k}{k}$.

6. Montrer que, pour tout n supérieur ou égal à 3, $T_{2n} = H_n \cdot \ln 2 + S_n - S_{2n}$.

7. Montrer que la suite (T_{2n}) converge et déterminer sa limite.

- 1. Déterminer l'ensemble de définition de la fonction
- 1 cv abs are $[-1,t_1]$ $\sigma: x \mapsto \sigma(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k^2}$.

 2. Exhiber deux nombres réels α et β tels que

$$\forall n \in \mathbb{N}^*, \ \int_0^{\pi} (\alpha t^2 + \beta t) \cos(nt) dt = \frac{1}{n^2}.$$

3. Montrer que, si $t \in]0, \pi]$, alors

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \cos(kt) = \frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}.$$

4. Démontrer le lemme de Riemann-Lebesgue : si φ est une fonction de classe \mathcal{C}^1 sur $[0,\pi]$, alors

$$\int_{\mathcal{A}} \frac{\varphi(t) - \varphi(t)}{\varphi(t)} \frac{dt}{dt} = 0.$$

5. Montrer que la fonction
$$\varphi$$
 définie sur $[0,\pi]$ par $\varphi(0) = -1$ et $\forall t \in]0,\pi]$, $\varphi(t) = \frac{t^2 - 2\pi t}{4\pi \sin\left(\frac{t}{2}\right)}$ est de classe \mathcal{C}^1 .

6. Conclure que

$$\sigma(1) = \frac{\pi^2}{6}.$$

Exercice 3

Pour chacune des propriétés suivantes, dites si elle est vraie ou fausse. Et prouvez votre réponse.

- 1. Si la série $\sum u_n$ converge, alors la suite (u_n) tend vers 0.
 - 2. Si la série $\sum (u_{n+1} u_n)$ converge, alors la suite (u_n) converge.
- 3. Si la suite $(u_{n+1} u_n)$ tend vers 0, alors la suite (u_n) converge.
- 4. Si les suites (u_n) et (v_n) sont équivalentes, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.