D.S. N° 5 DE MATHÉMATIQUES

Durée: 4 heures.

Cet énoncé contient deux exercices et un problème

Les calculatrices sont interdites.

Exercice 1 – probabilités

Définitions et notations

- Soient p un réel appartenant à l'intervalle]0,1[et N un entier naturel supérieur ou égal à 3. On pose q=1-p.
- On considère un tournoi réunissant une infinité de joueurs $(A_k)_{k\in\mathbb{N}}$, qui s'affrontent dans une série de duels de la façon suivante :
 - A_0 et A_1 s'affrontent durant le duel 1. Le perdant est éliminé du tournoi et le gagnant reste en jeu.
 - Le gagnant du premier duel participe au duel numéro 2 durant lequel il affronte le joueur A_2 . Ce duel se déroule de manière analogue, et ne dépend du duel précédent que par l'identité du joueur affrontant A_2 . Le perdant est éliminé du tournoi, et le gagnant du jeu participe au duel numéro 3 contre le joueur A_3 , et ainsi de suite.
 - Pour tout $k \in \mathbb{N}^*$, le joueur A_k participe au duel numéro k, qu'il peut remporter avec la probabilité p, son adversaire durant ce duel pouvant remporter le duel avec la probabilité q = 1 p.
 - Est désigné gagnant du tournoi, le premier joueur, s'il y en a un, qui gagne N jeux successifs lors du tournoi.
- Pour tout entier naturel n, on considère l'événement E_n : « le gagnant du tournoi n'a pas encore été désigné à l'issue du duel numéro n ».

On suppose que N=3 et $p=q=\frac{1}{2}.$

1) Déterminer les probabilités $P(E_1)$ et $P(E_2)$.

2) Soient n ≥ 3 et k ≥ n − 1. On note T_n l'événement « le joueur A_n gagne le duel n » et U_k l'événement « le joueur A_{n-1} gagne le duel k ».
Ecrire E_n à l'aide des événements E_{n-1}, E_{n-2}, T_n et d'événements U_k.

3) Démontrer que, pour tout entier naturel $n \geq 3$:

naturel
$$n \geq 3$$
:
$$P(E_n) = \frac{1}{2}P(E_{n-1}) + \frac{1}{4}P(E_{n-2}).$$
Portaginate of A

+ 4) Quelle est la probabilité de l'événement « le tournoi désignera un vainqueur »?

Exercice 2 – une série de fonctions

On s'intéresse aux fonctions $y: \mathbb{R}_+^* \to \mathbb{R}$ vérifiant le système

(S)
$$\begin{cases} \forall x > 0, \quad y(x+1) + y(x) = \frac{1}{x} \\ \lim_{x \to +\infty} y(x) = 0 \end{cases}$$

1) Montrer que, si f et g sont deux solutions du système (S), alors la fonction f-g est 2-périodique et en déduire que f = g. f-g=0 car ... 2

Soit, pour chaque $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}_+^*$, $f_n(x) = \frac{(-1)^n}{n \perp x}$.

- 2) Montrer que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+^* .
- 3) La convergence de la série de fonctions $\sum f_n$ est-elle normale sur \mathbb{R}_+^* ?
- 3) La convergence de la série de fonctions $\sum f_n$ est-elle normale sur \mathbb{R}_+^* ?

 4) Montrer que la convergence de la série de fonctions $\sum f_n$ est uniforme sur \mathbb{R}_+^* .

 (R.(n)) $\subseteq 1$

On note, pour tout $x \in \mathbb{R}_+^*$, $f(x) = \sum_{n=0}^\infty \frac{(-1)^n}{n+x}$.

- 5) Déterminer la limite de f en $+\infty$.
- 6) Montrer que la fonction f est de classe C^1 sur \mathbb{R}_+^* et qu'elle est décroissante.

 7) Montrer que : $\forall x \in \mathbb{R}_+^*$, $f(x+1) + f(x) = \frac{1}{x}$ 8) Déterminer un équivalent de f en 0. $f(x) = \frac{1}{x}$ 9) Déterminer un équivalent de f en $f(x) = \frac{1}{x}$
- 10) Montrer que l'intégrale $\int_0^1 \frac{t^{x-1}}{1+t} dt$ converge si, et seulement si, le réel x est strictement positif.

On note, pour tout
$$x \in \mathbb{R}_+^*$$
, $g(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$.

- 11) Montrer que la fonction g est décroissante.
 - 12) Montrer que la fonction g est une solution du système (S). Qu'en déduire?

Problème – les polynômes de Tchebychev

7,5

Partie A - étude d'un endomorphisme

Soient $n \in \mathbb{N}$ et l'application φ définie par

$$\varphi(P) = XP' - (1 - X^2)P''$$

pour tout polynôme $P \in \mathbb{R}_n[X]$.

- 1) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$. It is a $\mathbb{R}_n[X]$.
 - 2) Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_n[X]$.
- 3) Déterminer le spectre de l'endomorphisme φ.
 4) L'endomorphisme φ est-il diagonalisable? est-il bijectif?
- 5) Dans cette question, on pose n=2.

 Déterminer une base de $\mathbb{R}_2[X]$ formée de vecteurs propres de φ .

4

Partie B - les polynômes de Tchebychev

Soit $(T_n)_{n\in\mathbb{N}}$ la suite des polynômes de Tchebychev définie par

$$T_0 = 1$$
 , $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$.

- 6) Montrer que, pour chaque n ∈ N*, le degré du polynôme T_n est n et le coefficient du terme dominant de T_n est 2ⁿ⁻¹. In the le chief of Meddité of 7
 7) Montrer que, pour chaque n ∈ N et pour tout θ ∈ R,
- 7) Montrer que, pour chaque $n \in \mathbb{N}$ et pour tout $\theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- 8) Soit $n \geq 2$. On pose, pour chaque entier naturel k,

$$a_k = \cos\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right).$$

Montrer que les réels a_0, \dots, a_{n-1} sont distincts deux à deux. En déduire que le polynôme T_n possède n racines réelles distinctes deux à deux, appartenant à l'intervalle [-1, +1].

5.5

Partie C - vecteurs propres

Soit $n \in \mathbb{N}$. On recherche les vecteurs propres de l'endomorphisme φ .

- 9) Montrer que, pour tout réel $x \in [-1, +1], T_n(x) = \cos(n \cdot \operatorname{Arccos}(x)).$
 - 10) En déduire que, pour tout $x \in]-1,+1[$,

$$(1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0 (\mathcal{E}_n)$$

- **11)** Montrer que l'équation (\mathcal{E}_n) est vérifiée pour tout $x \in \mathbb{R}$.
 - 12) Montrer que T_n est un vecteur propre de φ ; à quelle valeur propre est-il associé?

Partie D - un produit scalaire

Pour tous polynômes P et Q à coefficients réels, on pose

$$\langle P \mid Q \rangle = \int_{-1}^{+1} P(x)Q(x) \frac{1}{\sqrt{1-x^2}} dx.$$

- 13) Montrer que l'intégrale $\int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} dx$ est convergente.
- ▶ 14) En déduire, pour tous polynômes P et Q dans $\mathbb{R}[X]$, la convergence de l'intégrale $\langle P \mid Q \rangle$.
- **15)** Démontrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.
- **2 16)** On note $\|\cdot\|$ la norme associée à ce produit scalaire. Pour chaque $n \in \mathbb{N}$, calculer $\int_0^{\pi} \cos^2(n\theta) d\theta$ et en déduire $\|T_n\|$.
- **2** 17) Montrer que, pour tous polynômes P et Q dans $\mathbb{R}[X]$, $\langle \varphi(P) \mid Q \rangle = \int_{-1}^{+1} P'(x)Q'(x)\sqrt{1-x^2} dx$.
- **18)** Comparer $\langle \varphi(P) | Q \rangle$ et $\langle \varphi(Q) | P \rangle$ pour tous polynômes P et Q.
- **19)** Montrer que (T_0, T_1, \dots, T_n) est une base orthogonale de $\mathbb{R}_n[X]$.