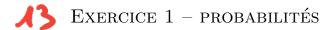
D.S. Nº 5 DE MATHÉMATIQUES

Durée: 4 heures.

Cet énoncé contient deux exercices et un problème

Les calculatrices sont interdites.



Définitions et notations

- Soient p un réel appartenant à l'intervalle]0,1[et N un entier naturel supérieur ou égal à 3. On pose
- On considère un tournoi réunissant une infinité de joueurs $(A_k)_{k\in\mathbb{N}}$, qui s'affrontent dans une série de duels de la façon suivante :
 - A_0 et A_1 s'affrontent durant le duel 1. Le perdant est éliminé du tournoi et le gagnant reste en jeu.
 - Le gagnant du premier duel participe au duel numéro 2 durant lequel il affronte le joueur A_2 . Ce duel se déroule de manière analogue, et ne dépend du duel précédent que par l'identité du joueur affrontant A_2 . Le perdant est éliminé du tournoi, et le gagnant du jeu participe au duel numéro 3 contre le joueur A_3 , et ainsi de suite.
 - Pour tout $k \in \mathbb{N}^*$, le joueur A_k participe au duel numéro k, qu'il peut remporter avec la probabilité p, son adversaire durant ce duel pouvant remporter le duel avec la probabilité q=1-p.
 - Est désigné gagnant du tournoi, le premier joueur, s'il y en a un, qui gagne N jeux successifs lors du tournoi.
- Pour tout entier naturel n, on considère l'événement E_n : « le gagnant du tournoi n'a pas encore été désigné à l'issue du duel numéro $n \gg$.

On suppose que N=3 et $p=q=\frac{1}{2}$.

1) Déterminer les probabilités $P(E_1)$ et $P(E_2)$.

2) Soient $n \geq 3$ et $k \geq n-1$. On note T_n l'événement « le joueur A_n gagne le duel n » et U_k l'événement « le joueur A_{n-1} gagne le duel k ». Ecrire E_n à l'aide des événements E_{n-1} , E_{n-2} , T_n et d'événements U_k .

3) Démontrer que, pour tout entier naturel $n \geq 3$:

$$P(E_n) = \frac{1}{2}P(E_{n-1}) + \frac{1}{4}P(E_{n-2}).$$
Udisjoints
Perty imposes of +1

4) Quelle est la probabilité de l'événement « le tournoi désignera un vainqueur »?

24 Exercice 2 – une série de fonctions

On s'intéresse aux fonctions $y: \mathbb{R}_+^* \to \mathbb{R}$ vérifiant le système

(S)
$$\begin{cases} \forall x > 0, \quad y(x+1) + y(x) = \frac{1}{x} \\ \lim_{x \to +\infty} y(x) = 0 \end{cases}$$

1) Montrer que, si f et g sont deux solutions du système (S), alors la fonction f-g est 2-périodique et en f-q=0 car ... 2

Soit, pour chaque
$$n \in \mathbb{N}$$
 et pour tout $x \in \mathbb{R}_+^*$, $f_n(x) = \frac{(-1)^n}{n+x}$.

- 2) Montrer que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+^* .
- **3)** La convergence de la série de fonctions $\sum f_n$ est-elle normale sur \mathbb{R}_+^* ?

3) La convergence de la série de fonctions
$$\sum f_n$$
 est-elle normale sur \mathbb{R}_+^* ?

4) Montrer que la convergence de la série de fonctions $\sum f_n$ est uniforme sur \mathbb{R}_+^* . $|R_-(x)| \le \frac{1}{n+x} \le \frac{1}{n+x}$.

On note, pour tout $x \in \mathbb{R}_+^*$, $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+x}$.

- 5) Déterminer la limite de f en $+\infty$.
- 6) Montrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et qu'elle est décroissante.
- 7) Montrer que : $\forall x \in \mathbb{R}_+^*$, $f(x+1) + f(x) = \frac{1}{x}$ 8) Déterminer un équivalent de f en f(x) en f(x) de f(x) de f(x) en f(x)
- 10) Montrer que l'intégrale $\int_0^1 \frac{t^{x-1}}{1+t} dt$ converge si, et seulement si, le réel x est strictement positif.

On note, pour tout
$$x \in \mathbb{R}_+^*$$
, $g(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$.

- 11) Montrer que la fonction g est décroissante.
- 12) Montrer que la fonction g est une solution du système (S).

 3 (Na) + 3 (N) = 1

 3 (Na) + 3 (N) = 1

 4 (N) = 1

 5 (Na) + 3 (Na) + 3 (Na) = 1

 6 (Na) + 3 (Na) + 3 (Na) = 1

 7 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na) + 3 (Na) + 3 (Na) = 1

 8 (Na) + 3 (Na)

Partie A - les polynômes de Tchebychev

Soit $(T_n)_{n\in\mathbb{N}}$ la suite des polynômes de Tchebychev définie par

$$T_0 = 1$$
 , $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$.

1) Montrer que, pour chaque $n \in \mathbb{N}^*$, le degré du polynôme T_n est n et le coefficient du terme dominant de Tn est 2n-1. In Kalisaka of Herditi of

2) Montrer que, pour chaque
$$n \in \mathbb{N}$$
 et pour tout $\theta \in \mathbb{R}$,
$$T_n(\cos \theta) = \cos(n\theta).$$

3) Soit $n \ge 2$. On pose, pour chaque entier naturel k,

$$a_k = \cos\left(\frac{\pi}{2n} + k\frac{\pi}{n}\right).$$

Montrer que les réels a_0, \dots, a_{n-1} sont distincts deux à deux. Déterminer les racines du polynôme T_n .

Partie B - vecteurs propres

Soient $n \in \mathbb{N}$ et l'application φ définie par

$$\varphi(P) = XP' - (1 - X^2)P''$$

pour tout polynôme $P \in \mathbb{R}_n[X]$.

4) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$. Linew: $\mathsf{teo}_{\mathfrak{p}}$ $\mathsf{Skl}(\mathsf{tt} \mathsf{Li}_{\mathfrak{p}}(\mathsf{tt}))$

5) Montrer que, pour tout réel $x \in [-1, +1]$, $T_n(x) = \cos(n \cdot \operatorname{Arccos}(x))$.

6) En déduire que, pour tout $x \in]-1,+1[$,

$$(1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0 (\mathcal{E}_n)$$

7) Montrer que l'équation (\mathcal{E}_n) est vérifiée pour tout $x \in \mathbb{R}$.

8) En déduire que T_n est un vecteur propre de φ . $T_n \in \mathbb{R}_n[\times b_0]$ $T_n \neq 0$

9) L'endomorphisme φ est-il diagonalisable? Est-il bijectif?

Partie C - un produit scalaire

Pour tous polynômes P et Q à coefficients réels, on pose

$$\langle P | Q \rangle = \int_{-1}^{+1} P(x)Q(x) \frac{1}{\sqrt{1-x^2}} dx.$$

10) Montrer que l'intégrale $\int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} dx$ est convergente.

11) En déduire, pour tous polynômes P et Q dans $\mathbb{R}[X]$, la convergence de l'intégrale $\langle P \mid Q \rangle$.

12) Démontrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.

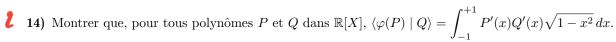
13) On note $\|\cdot\|$ la norme associée à ce produit scalaire.

Pour chaque
$$n \in \mathbb{N}$$
, calculer $\int_0^\pi \cos^2(n\theta) d\theta$ et en déduire $||T_n||$.

$$C \text{ b.v.} C \text{ c.t.} \text{ montine associée a ce produit scalaire.}$$

$$= \frac{\pi}{2} \text{ i.s.} \neq 0 \text{ o.s.}$$

$$= \pi \text{ N. } n = 0 \text{ o.s.}$$



15) Comparer
$$\langle \varphi(P) \mid Q \rangle$$
 et $\langle \varphi(Q) \mid P \rangle$ pour tous polynômes P et Q .

16) Montrer que
$$(T_0, T_1, \dots, T_n)$$
 est une base orthogonale de $\mathbb{R}_n[X]$.

Partie D - une méthode de quadrature

Soit $n \geq 2$. On cherche $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$ tel que

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \int_{-1}^{+1} \frac{P(x)}{\sqrt{1-x^2}} \, dx = \sum_{k=0}^{n-1} \lambda_k P(a_k) \qquad (*)$$

où les réels a_k ont été définis à la question 3.

17) Pour chaque $k \in [0, n-1]$, on note b_k le réel $\int_{-1}^{+1} \frac{x^k}{\sqrt{1-x^2}} dx$ qu'on ne cherchera pas à calculer. Montrer qu'une n-liste $(\lambda_0, \dots, \lambda_{n-1})$ vérifie la propriété (*) si, et seulement si,

$$\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ a_0^2 & a_1^2 & \cdots & a_{n-2}^2 & a_{n-1}^2 \\ \vdots & & & \vdots & \\ a_0^{n-1} & a_1^{n-1} & \cdots & a_{n-2}^{n-1} & a_{n-1}^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_{n-1} \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{pmatrix}.$$

- 18) Rappeler le déterminant de la matrice carrée apparue dans la question précédente. En déduire qu'il existe une unique n-liste $(\lambda_0, \dots, \lambda_{n-1})$ vérifiant la propriété (*).
- 19) En effectuant une division euclidienne par le polynôme T_n , montrer que la propriété (*) est vraie pour tout polynôme P appartenant à $\mathbb{R}_{2n-1}[X]$.

Partie E - une autre expression des polynômes de Tchebychev

20) Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $\theta \in \mathbb{R}$,

20) Montrer que, pour tout
$$n \in \mathbb{N}$$
 et pour tout $\theta \in \mathbb{R}$,
$$T_n(\operatorname{ch} \theta) = \operatorname{ch}(n\theta).$$
21) En déduire que, pour tout $n \in \mathbb{N}$ et pour tout réel $x \ge 1$,
$$(x + \sqrt{x^2 - 1})^n + (x + \sqrt{x^2 - 1})^n$$

$$T_n(x) = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}.$$