Exercice 1 - Série et plus encore

 $(\star\star\star)$

Soit (a_n) une suite de réels strictement positifs, telle que $\lim_{n\to+\infty} a_n \left(a_1^2 + \cdots + a_n^2\right) = 1$.

1. Montrer que $\lim_{n\to+\infty} a_n = 0$, puis que $\sum_{k=1}^n a_k^2$ diverge.

Par l'absurde on suppose que (a_n) ne converge pas vers 0. Dans ce cas la série de terme général a_k^2 diverge grossièrement, autrement dit $\lim_{n\to+\infty} S_n = +\infty$. Or de la condition imposé sur (a_n) on en déduit :

$$a_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$$

Ainsi a_n est de limite nulle, ce qui est absurde. Finalement (a_n) converge bien vers 0.

Enfin comme $\sum_{k=1}^{n} a_k^2 \sim \frac{1}{a_n}$ on en déduit que $\sum_{k=1}^{n} a_k^2$ diverge.

2. On pose $S_n = \sum_{k=1}^n a_k^2$, montrer que

$$\lim_{n \to +\infty} \int_{S_{n-1}}^{S_n} t^2 dt = 1$$

Par calcul on trouve:

$$\int_{S_{n-1}}^{S_n} t^2 dt = \frac{1}{3} \left(S_n^3 - S_{n-1}^3 \right)$$

$$= \frac{1}{3} \left(S_n - S_{n-1} \right) \left(S_n^2 + S_n S_{n-1} + S_{n-1}^2 \right)$$

$$= \frac{1}{3} a_n^2 \left(3S_n^2 - an^2 S_n - 2a_n^2 S_{n-1} - a_n^4 \right)$$

$$= (a_n S_n)^2 - \frac{1}{3} a_n^4 \left(S_n + S_{n-1} + a_n^2 \right)$$

$$= (a_n S_n)^2 - \frac{2}{3} a_n^4 S_n$$

Le premier terme du membre de droite tends vers 1 par continuité de la fonction carré, et de plus le deuxième terme tends vers 0. Par somme on en déduit que :

$$\lim_{n \to +\infty} \int_{S_{n-1}}^{S_n} t^2 dt = 1$$

3. Montrer que $a_n \sim \frac{1}{\sqrt[3]{3n}}$

On pose $a_0 = 0$ dès lors on trouve :

$$\int_0^{S_n} t^2 dt = \sum_{k=1}^n \int_{S_{n-1}}^{S_n} t^2 dt$$

Or d'après la question précédente $\lim_{n\to+\infty}\int_{S_{n-1}}^{S_n}t^2dt=1$ ainsi $\int_{S_{n-1}}^{S_n}t^2dt\sim 1$ et comme il s'agit de suite à terme strictement positif on en déduit que leur somme sont de même nature que que de plus :

$$\sum_{k=1}^{n} \int_{S_{n-1}}^{S_n} t^2 dt \sim \sum_{k=1}^{n} 1 = n$$

Et de plus comme :

$$\int_0^{S_n} t^2 dt = \frac{1}{3} S_n^3$$

On en déduit alors que $\frac{1}{3}S_n^3 \sim n$ et donc $S_n \sim \sqrt[3]{3n}$, puis par passage au quotient on obtient $a_n \sim \frac{1}{\sqrt[3]{3n}}$.

Exercice 2 - Série d'une série

(*******)

Déterminer la nature de la série $\sum_{n\geq 2}u_n$ où :

$$u_n = \frac{(-1)^n \sum_{k=1}^n \frac{1}{k}}{\ln(n!)}$$

Rappel: On a par comparaison série/intégrale $\sum_{k=1}^n \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n)$

On va appliquer le critère de Leibniz :

- Il est clair que la série $\sum_{n\geq 2} u_n$ est alternée.
- On a :

$$\ln(n!) = \sum_{k=1}^{n} \ln(k) \underset{n \to +\infty}{\sim} n \ln(n)$$

En couplant ceci au rappel de l'énoncé on trouve que $|u_n| \sim \frac{1}{n \to +\infty} \frac{1}{n}$ et donc $u_n \to 0$.

— Montrons que la suite $((|u_n|))$ est décroissante, au moins à partir d'un certain rang. Notons, pour tout $n \geq 2, \ H_n = \sum_{k=1}^n \frac{1}{k}$. On a, pour tout $n \geq 2$:

$$|u_{n+1}| - |u_n| = \frac{H_{n+1}}{\ln((n+1)!)} - \frac{H_n}{\ln(n!)}$$
$$= \frac{A_n}{\ln(n!)\ln((n+1)!)}$$

Où on a noté:

$$A_n = H_{n+1} \ln(n!) - H_n \ln\left((n+1)!\right)$$

$$= \left(H_n + \frac{1}{n+1}\right) \ln(n!) - H_n \left(\ln(n!) + \ln(n+1)\right)$$

$$= \frac{1}{n+1} \ln(n!) - H_n \ln(n+1)$$

Comme $\frac{1}{n+1}\ln(n!) \sim \frac{n\ln(n)}{n\to+\infty} \sim \ln(n)$ et que $H_n\ln(n+1) \sim \ln^2(n)$ on en déduit que $A_n \sim -\ln^2(n)$. En particulier, à partir d'un certain rang, A_n est négatif. Il en résulte que la suite $(|u_n|)$ est décroissante.

On conclut alors en invoquant le critère de Leibniz.

Exercice 3 - Supplémentaire stable de l'image

 $(\star\star)$

Soient E un K-ev de dimension finie, et $f \in \mathcal{L}(E)$. Montrer que $\mathrm{Im}(f)$ admet un supplémentaire dans E stable

par f si et seulement si :

$$\operatorname{Im}(f) \cap \ker(f) = \{0\}$$

Et que dans ces conditions, $\ker(f)$ est l'unique supplémentaire de $\operatorname{Im}(f)$ dans E, stable par f.

Supposons que Im (f) admette un supplémentaire S dans E stable par f. Montrons qu'alors $S = \ker(f)$, et par conséquent $\operatorname{Im}(f) \cap \ker(f)$. Soit $x \in S$, d'une part $f(x) \in \operatorname{Im}(f)$, et d'autre part, puisque S est stable par f on a $f(x) \in S$. Comme Im $(f) \cap S = \{0\}$ on en déduit que f(x) = 0 et donc $x \in \ker(f)$. Ainsi $S \subset \ker(f)$. De plus $E = \operatorname{Im}(f) \oplus S$ on a en utilisant le théorème du rang :

$$\dim(S) = \dim(E) - \dim\operatorname{Im}(f) = \dim\ker(f)$$

Or $S \subset \ker(f)$ et d'après ce qui précède leur dimensions sont égales, on en déduit que $S = \ker(f)$. Ainsi, si Im (f) admet un supplémentaire stable par f, alors Im $(f) \cap \ker(f) = \{0\}$, et comme le raisonnement précédent est valable pour tout supplémentaire de $\operatorname{Im}(f)$ dans E stable par f, on en conclut que dans ces conditions, $\ker(f)$ est l'unique supplémentaire de $\operatorname{Im}(f)$ dans E stable par f.

Réciproquement, si Im $(f) \cap \ker(f) = \{0\}$, alors en utilisant le théorème du rang, $\ker(f)$ est un supplémentaire de $\operatorname{Im}(f)$ dans E, et $\ker(f)$ est stable par f.

Relation entre une application et un projecteur

 $(\star\star)$

Soient E un K-ev, $f \in \mathcal{L}(E)$ et p un projecteur de E.

1. Montrer que

$$\ker(f \circ p) = \ker(p) \oplus \left(\ker(f) \cap \operatorname{Im}(p)\right)$$

D'abord puisque p est un projecteur on a $\ker(p) \cap \operatorname{Im}(p) = \{0\}$, donc a fortiori $\ker(p) \cap \left(\ker(f) \cap \operatorname{Im}(p)\right) = \{0\}$

 $\{0\}$, ainsi la somme $\ker(p) + (\ker(f) \cap \operatorname{Im}(p)) = \{0\}$ est directe.

Soit $x \in \ker(f \circ p)$ on a x = (x - p(x)) + p(x), où $x - p(x) \in \ker(p)$ car p est un projecteur et $p(x) \in \operatorname{Im}(p)$.

Or f(p(x)) = 0 donc $p(x) \in \ker(f)$ ainsi $\ker(f \circ p) \subset \ker(p) \oplus (\ker(f) \cap \operatorname{Im}(p))$.

Réciproquement, soit $x \in \ker(p) \oplus (\ker(f) \cap \operatorname{Im}(p))$, il existe donc $u \in \ker(p)$ et $v \in \ker(f) \cap \operatorname{Im}(p)$ tel que x = u + v. Ainsi on a p(x) = p(u) + p(v) = v car $v \in \text{Im}(p)$ et p est une projection. De plus on a $v \in \ker(f)$ d'où $f \circ p(x) = f(p(x)) = f(v) = 0$, donc $x \in \ker(f \circ p)$ d'où l'inclusion réciproque et l'égalité.

2. Montrer que

$$\operatorname{Im}(p \circ f) = \operatorname{Im}(p) \cap \left(\operatorname{Im}(f) + \ker(p)\right)$$

Soit $y \in \text{Im}(p \circ f)$, il existe donc $x \in E$ tel que y = p(f(x)) donc $y \in \text{Im}(p)$, de plus y = f(x) + f(x) $(p \circ f(x) - f(x))$ où $f(x) \in \text{Im}(f)$ mais aussi $p \circ f(x) - f(x) \in \text{ker}(p)$ car p est un projecteur, ainsi $\operatorname{Im}\left(p\circ f\right)\subset\operatorname{Im}\left(p\right)\cap\left(\operatorname{Im}\left(f\right)+\ker\left(p\right)\right).\text{ R\'{e}ciproquement, soit }y\in\operatorname{Im}\left(p\right)\cap\left(\operatorname{Im}\left(f\right)+\ker\left(p\right)\right),\text{ d'une part }f\in\operatorname{Im}\left(p\right)$ $p(y) = y \operatorname{car} y \in \operatorname{Im}(p)$ et d'autre part il existe $u \in \ker(p)$ et $v \in \operatorname{Im}(f)$ tel que y = u + v. Il existe également $w \in E$ tel que v = f(w), on a alors:

$$y = p(y) = p(u + v) = p(u) + p(v) = p(f(w)) \in \text{Im}(p \circ f)$$

Ceci montre l'inclusion réciproque et donc l'égalité.

Exercice 5 Trace et déterminant

 $(\star\star)$

Soit $A \in \mathcal{M}_2(\mathbb{R})$.

1. Vérifier que $A^2 - \text{tr}(A) A + \text{det}(A) I_2 = 0$.

Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a tr(A) = a + d et det(A) = ad - bc. De plus on a :

$$A^{2} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix}$$

D'où:

$$\operatorname{tr}(A) A - \det(A) I_2 = (a+d) \begin{pmatrix} a & b \\ c & d \end{pmatrix} - (ad-bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} a^2 + ad - ad + bc & ab + bd \\ ac + cd & ad + d^2 - ad + bc \end{pmatrix}$$
$$= A^2$$

2. Montrer que si $A^3 = 0$ alors $A^2 = 0$.

Tout d'abord A n'est pas inversible, car $A^3=0$ ainsi $\det A=0$. En multipliant l'égalité précédente par A on obtient donc :

$$A^3 - \operatorname{tr}(A) A^2 = 0$$

Soit $\operatorname{tr}(A)A^2=0$ ainsi $A^2=0$ ou $\operatorname{tr}(A)=0$. Or si $\operatorname{tr}(A)=0$ d'après l'équation de la question 1. on a $A^2=0$ d'où le résultat.

3. On suppose ici que $A \neq I_2$ et $A \neq 0$. Montrer que A est la matrice d'une projection si et seulement si tr A = 1 et $\det A = 0$.

Si A est une projection, alors $A^2 = A$, d'où A ($A - I_2$) = 0, il s'ensuit que A n'est pas inversible car $A \neq I_2$, et donc det A = 0. En reportant ceci dans l'égalité de la question 1. on en déduit $(1 - \operatorname{tr} A) A = 0$ et donc $\operatorname{tr} A = 1$ car $A \neq 0$. Réciproquement si det A = 0 et $\operatorname{tr} A = 1$ d'après l'équation de la question 1. on en déduit $A^2 - A = 0$ et donc A est la matrice d'une projection.

Exercice 6 - Somme de deux projecteurs

 $(\star\star)$

Soit E un espace vectoriel, p et q deux projecteurs de E.

1. Montrer que p+q est un projecteur si et seulement si $p \circ q = 0 = q \circ p$.

On remarque que l'on a $(p+q)^2 = p^2 + p \circ q + q \circ p + q^2 = p + q + p \circ q + q \circ p$. Donc si $p \circ q = 0 = q \circ p$ on a bien $(p+q)^2 = p + q$ et donc p+q est bien un projecteur.

Réciproquement si p+q est un projecteur on a $(p+q)^2=p+q$ et donc en simplifiant on trouve $p\circ q+q\circ p=0$ soit $p\circ q=-q\circ p$. En composant par p à droite, d'une part, et à gauche d'autre part on trouve :

$$\left\{ \begin{array}{ccc} p \circ q & = & -p \circ q \circ p \\ p \circ q \circ p & = & -q \circ p \end{array} \right.$$

On en déduit donc $p \circ q = q \circ p$ or on sais déjà que $p \circ q = -q \circ p$ d'où $p \circ q = 0 = q \circ p$.

- 2. On considère à présent que p+q est un projecteur.
 - 2.a. Montrer que $\ker(p+q) = \ker p \cap \ker q$.

De façon immédiate $\ker p \cap \ker q \subset \ker (p+q)$, réciproquement soit $x \in \ker (p+q)$ on a donc p(x)+q(x)=0. En composant par p à gauche on trouve alors $p^2(x)+p\circ q(x)=0$ or p est un projecteur et de plus p+q aussi, d'après ce qui précède on en déduit que $p\circ q=0$ et donc p(x)=0 et par le même raisonnement on trouve q(x)=0. Finalement on a bien $x\in \ker p\cap \ker q$ d'où l'inclusion réciproque et donc l'égalité.

2.b. Montrer que $\operatorname{Im}(p+q) = \operatorname{Im} p + \operatorname{Im} q$.

De façon immédiate on a $\operatorname{Im}(p+q) \subset \operatorname{Im} p + \operatorname{Im} q$, réciproquement soit $x \in \operatorname{Im} p + \operatorname{Im} q$, soit donc $y \in \operatorname{Im} p$ et $z \in \operatorname{Im} q$ tels que x = p(y) + q(z). On remarque alors que l'on a :

$$(p+q)(x) = p(x) + q(x)$$

= $p^{2}(y) + p \circ q(z) + q \circ p(y) + q^{2}(z)$
= $p(y) + q(z)$
= x

L'avant-dernière égalité provenant du fait que p et q sont deux projecteurs et que d'après la question 1. comme p+q est un projecteur $p\circ q=0=q\circ p$. Ainsi on a bien $x\in {\rm Im}\,(p+q)$ d'où l'inclusion et donc l'égalité.