LYCÉE CLEMENCEAU MPI/MPI*

K D O D U 11/10/2024

Intégrales & réduction

1. Justifier que l'ensemble E des fonctions continues et bornées de $\mathbb R$ vers $\mathbb R$ est un espace vectoriel.

2. Soit une fonction $f \in E$. Prouver que, pour tout $x \in \mathbb{R}$, l'intégrale

$$\Phi(f)(x) = \int_0^{+\infty} e^{-t} f(x+t) dt$$

est absolument convergente.

3. Soit une fonction $f \in E$. Montrer que la fonction $\Phi(f)$ est bornée.

4. Soit une fonction $f \in E$. Justifier que, tout $x \in \mathbb{R}$, $\Phi(f)(x) = e^x \int_{\tau}^{+\infty} e^{-u} f(u) du$.

5. Est-il vrai que, si $\lim_{x\to +\infty} f(x) = 0$, alors $\lim_{x\to +\infty} \Phi(f)(x) = 0$?

6. Soit une fonction $f \in E$. Montrer que la fonction $\Phi(f)$ est dérivable sur \mathbb{R} et que sa dérivée $\Phi(f)'$ est égale à $\Phi(f) - f$.

7. Justifier que l'application $\Phi: f \mapsto \Phi(f)$ est un endomorphisme de E.

8. Déterminer toutes les fonctions $f \in E$ telles que $\Phi(f) = 0$.

9. L'endomorphisme Φ est-il injectif? surjectif?

10. Déterminer toutes les fonctions $f \in E$ telles que $\Phi(f) = f$.

11. Déterminer le spectre de Φ .

12. Prouver que, pour tout $i \in \mathbb{N}$, l'intégrale $K_i = \int_0^{+\infty} t^i e^{-t} dt$ est convergente et la calculer.

13. Soit $n \in \mathbb{N}$. Montrer que l'application $\varphi : P \mapsto \varphi(P)$ telle que $\forall x \in \mathbb{R}, \ \varphi(P)(x) = \int_0^{+\infty} e^{-t}P(x+t) dt$ définit bien un endomorphisme de $\mathbb{R}_n[X]$ et déterminer la matrice $M = (m_{ij})$ de φ dans la base canonique de $\mathbb{R}_n[X]$.

14. Cette matrice M est-elle inversible?

^{1.} L'ensemble E des fonctions continues et bornées de $\mathbb R$ vers $\mathbb R$ est un sous-espace vectoriel de l'espace vectoriel $\mathcal C^0(\mathbb R,\mathbb R)$ car la fonction nulle est continue et bornée et car toute combinaison linéaire de fonctions bornées est bornée. En effet : si $\exists (M,N) \in \mathbb R^2, \ \forall x \in \mathbb R, \ \begin{cases} |f(x)| \leq M \\ |g(x)| \leq N \end{cases}$, alors $\forall x \in \mathbb R, \ |\alpha f(x) + \beta g(x)| \leq |\alpha| |f(x)| + |\beta| |g(x)| \leq |\alpha| M + |\beta| N$.

2. Si une fonction f appartient à E, alors elle est bornée, d'où $\exists M \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ |f(t)| \leq M$. D'où $|\mathbf{e}^{-t}f(x+t)| \leq M\mathbf{e}^{-t}$ pour tout $t \geq 0$.

Or
$$\int_0^{+\infty} M e^{-t} dt$$
 est convergente, d'où l'intégrale $\int_0^{+\infty} |e^{-t} f(x+t)| dt$ converge aussi.

Donc l'intégrale
$$\Phi(f)(x) = \int_0^{+\infty} e^{-t} f(x+t) dt$$
 est absolument convergente.

3. D'après l'inégalité triangulaire,

$$|\Phi(f)(x)| = \left| \int_0^{+\infty} e^{-t} f(x+t) \, dt \right| \le \int_0^{\infty} |e^{-t} f(x+t)| \, dt \le \int_0^{\infty} M e^{-t} \, dt = M$$

pour tout réel x. Donc la fonction $\Phi(f)$ est bornée.

- 4. On effectue le changement de variable u = x + t. La fonction $t \mapsto x + t$ est C^1 et strictement croissante, d'où : $\Phi(f)(x) = \int_{-\infty}^{+\infty} e^{-(u-x)} f(u) du = e^x \int_{-\infty}^{+\infty} e^{-u} f(u) du$.
- 5. Soit $\varepsilon > 0$. Si $\lim_{x \to +\infty} f(x) = 0$, alors il existe $X \in \mathbb{R}$ tel que : $\forall x \geq X, |f(x)| \leq \varepsilon$. D'où :

$$\forall x \geq X, \ |\Phi(f)(x)| = \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \right| \leq \left| \mathrm{e}^x \int_x^{+\infty} \left| \mathrm{e}^{-u} f(u) \right| \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right| \Phi(f)(x) \leq \left| \mathrm{e}^x \int_x^{+\infty} \mathrm{e}^{-u} f(u) \, du \, \, \mathrm{d'après\ l'inégalit\'e\ triangulaire.} \right|$$

$$e^x \int_x^{+\infty} e^{-u} \varepsilon \, du \le e^x e^{-x} \varepsilon$$
. On a montré que :
$$\lim_{x \to +\infty} f(x) = 0 \implies \lim_{x \to +\infty} \Phi(f)(x) = 0$$

6. On déduit de la question (4) que

$$\Phi(f)(x) = e^x \cdot \left(\int_7^{+\infty} e^{-u} f(u) du - \int_7^x e^{-u} f(u) du \right) = e^x \cdot \left(\lim_{+\infty} G - G(x) \right),$$

en notant $G: x \mapsto \int_{7}^{x} e^{-u} f(u) du$ une primitive de la fonction continue $u \mapsto e^{-u} f(u)$. Par suite, la fonction $\Phi(f)$ est dérivable en tant que produit de fonctions dérivables. De plus,

$$\forall x \in \mathbb{R}, \ \Phi(f)'(x) = e^x \left(\lim_{t \to \infty} G - G(x) \right) + e^x \left(0 - G'(x) \right) = \Phi(f)(x) - f(x)$$

car
$$G'(x) = e^{-x} f(x)$$
. Donc
$$\Phi(f)' = \Phi(f) - f.$$

7. D'une part, l'application Φ est linéaire; d'autre part, $\Phi(f)$ appartient à E pour tout $f \in E$. En effet, $\Phi(f)$ est continue car dérivable d'après (6). Et $\Phi(f)$ est bornée d'après (3).

Donc Φ est un endomorphisme de E.

8. Analyse : Soit $f \in E$. Si la fonction $\Phi(f)$ est nulle, alors elle est constante et sa dérivée $\Phi(f)'$ est donc nulle. Or $\Phi(f)' = \Phi(f) - f$ d'après (4). Donc f = 0. Synthèse : Si f = 0, alors $\Phi(f) = 0$.

Synthese: Si f = 0, alors $\Phi(f) = 0$. Conclusion: $\Phi(f) = 0$ si, et seulement si, f = 0.

9. De la question précédente, il résulte que Ker $\Phi = \{0_E\}$. D'où l'application linéaire Φ est injective . Mais Φ n'est pas surjective

car la fonction $x \mapsto x$ si $x \in [0,1]$, 2-x si $x \in [1,2]$, 0 sinon est continue et bornée, et appartient donc à E. Mais n'est pas dérivable et n'appartient donc pas Im Φ d'après la question (6).

10. Analyse : Soit $f \in E$. Si la fonction $\Phi(f) = f$, alors $\Phi(f)' = f'$. Or $\Phi(f)' = \Phi(f) - f$ d'après (4). D'où f' = 0. Donc la fonction f est constante

Synthèse : Si
$$f$$
 est constante, alors $\exists K \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ f(t) = K$. D'où $\forall x \in \mathbb{R}, \ \Phi(f)(x) = \int_0^{+\infty} K e^{-t} dt = K$. Donc $\Phi(f) = f$.

Conclusion : $\Phi(f) = f$ si, et seulement si, la fonction f est constante.

- 11. Rappelons qu'un réel λ est une valeur propre de Φ si, et seulement si, il existe $f \in E$ tel que $f \neq 0$ et $\Phi(f) = \lambda f$. Des deux questions précédentes, il résulte que 0 n'est pas une valeur propre et que 1 en est une. Soit maintenant un réel $\lambda \notin \{0,1\}$. Si $\Phi(f) = \lambda f$, alors $\Phi(f)' = \lambda f'$ et, d'après (4), $\lambda f' = (\lambda - 1)f$, d'où $f' = \frac{\lambda - 1}{\lambda}f$ car $\lambda \neq 0$. On résout cette équation différentielle : $\exists K \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = Ke^{\frac{\lambda - 1}{\lambda}x}$. Or $\lambda \neq 1$, donc : ou bien K = 0 (et alors f = 0), ou bien f n'est pas bornée (et alors $f \notin E$). Dans les deux cas, λ n'est pas une valeur propre. Donc
- 12. L'intégrale $K_i = \int_0^{+\infty} t^i e^{-t} dt$ est impropre en $+\infty$. Elle est convergente car la fonction $t \mapsto t^i e^{-t}$ est continue et $t^i e^{-t} = \mathop{o}_{t \to +\infty} \left(\frac{1}{t^2}\right)$. Or $\frac{1}{t^2}$ ne change pas de signe au voisinage de $+\infty$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ converge d'après le critère de

On montre par récurrence sur i que $K_i = i!$:

- $K_0 = \int_0^{+\infty} e^{-t} dt = [-e^{-t}]_0^{+\infty} = 1.$
- Supposons que $K_i = i!$ pour un entier $i \in \mathbb{N}$ et intégrons par partie : $K_{i+1} = \int_0^{+\infty} uv'$ et les fonctions $u : t \mapsto -e^{-t}$ et $v : t \mapsto t^{i+1}$ sont de classe C^1 , d'où $K_{i+1} = [-t^{i+1}e^{-t}]_0^{+\infty} + \int_0^{+\infty} (i+1)t^ie^{-t} dt = (i+1)K_i$ car $\lim_{t \to +\infty} t^{i+1}e^{-t} = 0$ par croissances comparées.

D'où $K_{i+1} = (i+1) \cdot i! = (i+1)!$.

- Donc $K_i = i!$ pour tout $i \in \mathbb{N}$
- 13. Soient $x \in \mathbb{R}$ et $j \in \mathbb{N}$: pour tout $t \in [0, +\infty[, (x+t)^j = \sum_{i=0}^{j} {j \choose i} t^{j-i} x^i$.

L'intégrale $L_j(x) = \int_0^{+\infty} e^{-t} (x+t)^j dt$ est convergente car c'est la combinaison linéaire $L_j(x) = \sum_{i=0}^{J} {j \choose i} x^i K_{j-i}$ des j+1

intégrales convergentes K_i . Or $K_{j-i} = (j-i)!$ et $\binom{j}{i} = \frac{j!}{i!(j-i)!}$. Donc $L_j(x) = \sum_{i=0}^j \frac{j!}{i!} x^i$

$$L_j(x) = \sum_{i=0}^j \frac{j!}{i!} x^i$$

Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Pour tout polynôme $P \in \mathbb{R}_n[X]$, il existe $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ tel que $P(X) = \sum_{i=0}^n a_i X^j$, d'où $\varphi(P)(x) = \int_0^{+\infty} e^{-t} P(x+t) \, dt \text{ est une intégrale convergente car c'est la combinaison linéaire } \varphi(P)(x) = \sum_{i=0}^n a_i L_i(x) \text{ des } x$ n+1 intégrales convergentes $L_j(x)$. De plus, $\varphi(P)$ est un polynôme de degré inférieur ou égal à n car c'est la combinaison linéaire $\sum_{j=0}^{n} a_j L_j$ des polynômes L_j de degrés $j \leq n$. Enfin, φ est une application linéaire car $\varphi(\alpha P + \beta Q) = \alpha \varphi(P) + \beta \varphi(Q)$

pour tous $(\alpha, \beta) \in \mathbb{R}^2$ et $(P, Q) \in \mathbb{R}_n[X]$ par linéarité de l'intégrale. Donc φ est un endomorphisme de $\mathbb{R}_n[X]$

$$\varphi$$
 est un endomorphisme de $\mathbb{R}_n[X]$

sa matrice M dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire supérieure :

$$M = \begin{matrix} \varphi(1) & \varphi(X) & \varphi(X^2) & \cdots & \varphi(X^n) \\ 1 & 1 & 2 & & n! \\ 0 & 1 & 2 & & n! \\ 0 & 0 & 1 & & n!/2 \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & & 1 \end{matrix} \right) = (m_{ij})_{0 \leq i,j \leq n} \,, \quad \text{où } m_{ij} = \frac{j!}{i!} \text{ si } i \leq j \text{ et est nul sinon }$$

$$\operatorname{car} L_j = \sum_{i=0}^j \frac{j!}{i!} X^i.$$

14. Le déterminant de la matrice triangulaire M vaut 1, il est donc non nul. On en déduit que la matrice M est inversible.