COLLE Nº 05

Intégrales & structures

Exercice 1. Soit l'intervalle I =]-1, +1[. Pour chaque $(x, y) \in I^2$, on définit le réel

$$x * y = \frac{x + y}{1 + xy}.$$

- 1. Montrer que, pour tout $(x,y) \in I^2$, $x * y \in I$.
- 2. Montrer que (I, *) est un groupe commutatif.
- 3. Soit $a \in [0, 1[$. Vérifier que A = [a, 1[est stable par la loi *. L'ensemble (A, *) est-il un sous-groupe de (I, *)?
- 4. Montrer que la fonction th : $\mathbb{R} \to I$ est bijective et déterminer l'expression de sa réciproque th⁻¹.
- 5. Montrer que the st un isomorphisme du groupe $(\mathbb{R}, +)$ vers le groupe (I, *).

Exercice 2. Soient a et b deux réels tels que 0 < a < b.

- 1. Montrer que l'intégrale $\int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$ converge.
- 2. Soient x et y deux réels tels que 0 < x < y. Démontrer que :

$$\int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ax}^{bx} \frac{e^{-t}}{t} dt - \int_{ay}^{by} \frac{e^{-t}}{t} dt.$$

3. En déduire que :

$$\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln\left(\frac{b}{a}\right).$$

Exercice 3 (Nombre de diviseurs d'un entier – oral X ENS PSI 2011).

Soient un entier $n \in \mathbb{N}^*$ et la matrice $A_n = (a_{i,j})_{1 \leq i,j \leq n}$ définie par : $a_{i,j} = 1$ si i|j et zéro sinon.

- 1. Montrer que $a_{i,1} + a_{i,2} + \cdots + a_{i,n}$ est égal à la partie entière de $\frac{n}{i}$.
- 2. Soit s_n la somme des n^2 éléments de la matrice A_n . Déterminer un équivalent de s_n .
- 3. Soit d_n le nombre des diviseurs de n. Montrer que $d_1 + \cdots + d_n \sim n \ln n$.