Chapitre VI Probabilités

Table des matières

VI.1	Résultats & événements	49
VI.2	Probabilité	50
VI.3	La continuité (dé)croissante	51
VI.4	L'indépendance	53
VI.5	Probabilité conditionnelle	54
VI.6	La formule des probabilités totales	55
VI.7	La formule des probabilités composées	56
VI.8	La formule de Bayes	57

VI.1 RÉSULTATS & ÉVÉNEMENTS

Exemple 1 — « On lance un dé » est une expérience aléatoire et son univers est $\Omega = [1; 6]$. (Le mot latin pour un dé est « alea » et a donné le terme « aléatoire ». Le mot hasard vient de l'arabe « az-zahr » qui signifie « le dé ».)

« Obtenir un résultat pair » est l'événement $E = \{2; 4; 6\} \subset \Omega$ et « obtenir un 3 » est l'événement $\{3\}$, à ne pas confondre avec le résultat $3: 3 \in \Omega$ et $\{3\} \in \mathcal{P}(\Omega)$.

Vocabulaire des probabilités	Notation	Vocabulaire des ensembles
Événement certain	Ω	Univers
Événement impossible	Ø	Ensemble vide
Événement contraire	$\Omega \setminus A = \overline{A}$	Complémentaire
Événement élémentaire	$\{\omega\}$	Singleton
A implique B	$A \subset B$	A est une partie de B
Le résultat ω réalise l'événement A	$\omega \in A$	ω appartient à A
Et	\cap	Intersection
Ou	\cup	Réunion (ou union)
Événements incompatibles	$A \cap B = \emptyset$	Parties disjointes

Remarque 2 (Unions et intersections) — Par définition,

$$\omega \in \bigcap_{i \in I} A_i \iff \forall i \in I, \ \omega \in A_i \quad (\omega \text{ appartient à tous les } A_i)$$

$$\omega \in \bigcup_{i \in I} A_i \iff \exists i \in I, \ \omega \in A_i \quad (\omega \text{ appartient à au moins un des } A_i)$$

On dit que l'union $\bigcup_{i \in I} A_i$ est **disjointe** si les ensembles (événements) A_i sont disjoints (incompatibles) deux à deux : $\forall i \neq j, \ A_i \cap A_j = \emptyset$.

L'intersection est distributive par rapport à l'union et l'union est distributive par rapport à l'intersection.

Exercice 3 — Voici une expérience aléatoire. On lance une pièce indéfiniment. À chaque lancer, la pièce tombe sur Pile ou Face. Quel est l'univers Ω de cette expérience?

Soient, pour chaque $n \in \mathbb{N}^*$, les événements :

 A_n « Le premier Face apparaît au n-ième lancer » et B_n « Les n premiers lancers donnent Pile »

- 1. Quel est l'événement $\bigcup_{n\in\mathbb{N}^*} A_n$?
- 2. Quel est l'événement $\bigcap_{n\in\mathbb{N}^*} B_n$?
- 3. Exprimer $\overline{B_n}$ en fonction des événements A_k .
- 4. Quel est l'événement $B_n \cap \overline{B_{n+1}}$?

Dans l'exercice précédent, l'univers Ω est infini et certains événements sont la réunion ou l'intersection d'une infinité dénombrable d'événements. C'est rendu possible par la définition suivante :

DÉFINITION 4 (La tribu est l'ensemble des événements)

Soit un ensemble Ω . On dit qu'une partie \mathscr{A} de $\mathcal{P}(\Omega)$ est une **tribu** sur Ω si :

- 2. si $A \in \mathcal{A}$, alors $\overline{A} \in \mathcal{A}$ (stabilité par passage au complémentaire); 3. si $\forall n \in \mathbb{N}, A_n \in \mathcal{A}$, alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ (stabilité par union dénombrable).

On appelle événement tout élément de la tribu.

Proposition 5

Si \mathscr{A} est une tribu sur Ω , alors :

- $\begin{array}{ll} 1. \ \varnothing \in \mathscr{A} \ ; \\ \\ 2. \ \mathrm{si} & \forall n \in \mathbb{N}, \, A_n \in \mathscr{A}, \, \mathrm{alors} & \bigcap_{n \in \mathbb{N}} A_n \in \mathscr{A}. \end{array}$
- 3. $\forall A \in \mathscr{A}, \ \forall B \in \mathscr{A}, \ A \setminus B \in \mathscr{A}$

Preuve —

- 1. $\emptyset = \overline{\Omega}$.
- 2. Soit, pour chaque $n \in \mathbb{N}$, $B_n = \overline{A_n} \in \mathscr{A}$. La tribu \mathscr{A} est stable par union dénombrable, d'où $\bigcup B_n \in \mathscr{A}$. On passe au complémentaire : $\overline{\bigcup_{n\in\mathbb{N}}B_n}\in\mathscr{A}.$ Or $\overline{\bigcup_{n\in\mathbb{N}}B_n}=\bigcap_{n\in\mathbb{N}}\overline{B_n}=\bigcap_{n\in\mathbb{N}}A_n.$
- 3. $A \setminus B = A \cap \bar{B}$.

VI.2 Probabilité

Le couple (Ω, \mathscr{A}) est appelé un espace probabilisable. On le munit d'une probabilité P: le triplet (Ω, \mathcal{A}, P) est appelé un espace probabilisé.

DÉFINITION 6

Soit (Ω, \mathscr{A}) un espace probabilisable.

Une **probabilité** sur (Ω, \mathscr{A}) est une application $P : \mathscr{A} \longrightarrow [0,1]$ telle que :

- 2. $(\sigma-{\it additivit\'e})$ pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'événements,

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=0}^{+\infty}P(A_n)\ \underline{\operatorname{si}}\ \text{l'union est }\underline{\operatorname{disjointe}}.$$

REMARQUE 7 — Une union, finie ou dénombrable, est toujours commutative et on peut donc la noter indifféremment $\bigcup_{n\in\mathbb{N}}$ ou $\bigcup_{n=0}^{\infty}$. Une somme finie de scalaires est commutative, une somme dénombrable aussi \underline{si} la série est absolument convergente (c'est le cas de la série $\sum P(A_n)$ dans la définition précédente) : on peut alors la noter indifféremment $\sum_{n=0}^{\infty}$ ou $\sum_{n\in\mathbb{N}}$.

Proposition 8 1. $P(\emptyset) = 0$.

2. (additivité) Pour toute famille finie d'événements $(A_1, \ldots, A_n) \in \mathscr{A}^n$,

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) \text{ \underline{si} I'union est \underline{disjointe}}.$$

- 3. Pour tout événement $A \in \mathcal{A}, P(\overline{A}) = 1 P(A)$.
- 4. (croissance de la probabilité) Pour tout $(A,B)\in \mathscr{A}^2,\ A\subset B \implies P(A)\leq P(B).$
- 5. Pour tout couple d'événements $(A,B)\in \mathscr{A}^2, \quad P(A\cup B)=P(A)+P(B)-P(A\cap B).$
- 6. (sous-additivité) Pour toute famille finie d'événements $(A_1, \ldots, A_n) \in \mathscr{A}^n$,

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i).$$

Preuve —

1. Les événements $A_0 = \Omega$ et $A_n = \emptyset$ pour tout n > 1 sont deux à deux incompatibles, d'où

$$1 = P(\Omega) = P\left(\bigcup_{n \in \mathbb{N}} A_n\right) = P(\Omega) + \sum_{n \ge 1} P(\varnothing). \text{ Donc } P(\varnothing) = 0.$$

2. Soit la famille $(A_1, \ldots, A_n) \in \mathscr{A}^n$ d'événements deux à deux incompatibles et $A_m = \emptyset$ pour tout $m \ge n + 1$. D'après 1,

$$P\left(A_1 \cup \ldots \cup A_n\right) = P\left(\bigcup_{k \in \mathbb{N}} A_k\right) = \sum_{k \in \mathbb{N}} P\left(A_n\right) = P(A_1) + \cdots + P(A_n) \text{ car l'union est disjointe.}$$

- 3. $A\cup \bar{A}=\Omega$ et l'union est disjointe : on applique la propriété 2.
- 4. Si $A \subset B$, alors $A \cup (B \setminus A) = B$ et cette union est disjointe : on applique alors la propriété 2.
- 5. $A \cup B = A \cup (B \cap \bar{A})$ (union disjointe) et $B = (B \cap \bar{A}) \cup (B \cap A)$ (union disjointe), d'où $P(A \cup B) = P(A) + P(B \cap \bar{A})$ et $P(B) = P(B \cap \bar{A}) + P(B \cap A)$.
- 6. D'après la propriété précédente, $P(A \cup B) \leq P(A) + P(B)$. Puis par récurrence sur n.

VI.3 LA CONTINUITÉ (DÉ)CROISSANTE

Théorème 9

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements.

- 1. (continuité croissante) Si $\forall n \in \mathbb{N}, \ A_n \subset A_{n+1}, \ \text{alors} \quad P\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} P(A_n).$
- 2. (continuité décroissante) Si $\forall n \in \mathbb{N}, \ A_{n+1} \subset A_n$, alors $P\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} P(A_n)$.

Preuve -

1. Les événements $B_0 = A_0$ et, pour chaque $n \in \mathbb{N}^*$, $B_n = A_n \setminus A_{n-1}$ sont deux à deux incompatibles, d'où leur union est disjointe et, par σ -additivité :

$$P\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \sum_{n=0}^{\infty}P(B_n) = \lim_{N\to\infty}\sum_{n=0}^{N}P(B_n).$$

Or la somme partielle $\sum_{n=0}^{N} P(B_n)$ vaut $P(A_N)$ car c'est une somme télescopique. En effet, pour tout $n \in \mathbb{N}^*$, $B_n \cup A_{n-1} = A_n$ et l'union est disjointe, d'où $P(B_n) = P(A_n) - P(A_{n-1})$.

 $B_n \cup A_{n-1} = A_n$ et l'union est disjointe, d'où $P(B_n) = P(A_n) - P(A_{n-1})$. Donc $P\left(\bigcup_{n \in \mathbb{N}} B_n\right) = \lim_{N \to \infty} P(A_N)$. Enfin on remarque que $\bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A_n$ et on conclut.

2. On passe aux événements contraires : soit, pour chaque $n \in \mathbb{N}$, $C_n = \overline{A_n}$. La suite (C_n) est croissante pour l'inclusion (car la suite A_n est décroissante), d'où $P\left(\bigcup_{n \in \mathbb{N}} C_n\right) = \lim_{n \to \infty} P(C_n)$. Puis on repasse aux événements contraires :

$$\bigcap_{n\in\mathbb{N}} A_n = \overline{\bigcup_{n\in\mathbb{N}} C_n}, \text{ d'où } 1 - P\left(\bigcap_{n\in\mathbb{N}} A_n\right) = \lim_{n\to\infty} \left[1 - P(A_n)\right].$$

Corollaire 10

Pour toute suite $(B_n)_{n\in\mathbb{N}}$ d'événements :

$$P\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}P\left(\bigcup_{k=0}^nB_k\right)\quad\text{ et }\quad P\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}P\left(\bigcap_{k=0}^nB_k\right).$$

Preuve — Soit, pour chaque $n \in \mathbb{N}$, l'événement $A_n = \bigcup_{k=0}^n B_k$. La suite (A_n) est croissante car $A_{n+1} = A_n \cup B_{n+1}$, d'où

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}P(A_n)\text{ par continuit\'e croissante. Or }\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}B_n.$$

De même pour l'intersection en utilisant la continuité décroissante

Exercice 11 — On lance indéfiniment une pièce qui tombe de manière équiprobable sur Pile ou Face. Montrer que la probabilité d'obtenir toujours Pile est nulle.

Cet exercice montre que

Événement impossible
$$A=\varnothing$$
 \Longrightarrow Probabilité nulle $P(A)=0.$

Ceci motive la définition suivante :

Définition 12

On dit qu'un événement est :

- **négligeable** ou **presque impossible** si sa probabilité est nulle;
- presque certain si sa probabilité vaut 1.

« La pièce tombe toujours sur Pile » est un événement négligeable mais pas impossible.

Proposition 13 (σ -sous-additivité)

Soit
$$(A_n)_{n\in\mathbb{N}}$$
 une suite d'événements. Si la série $\sum P(A_n)$ converge, alors $P\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n=0}^{\infty}P(A_n)$.

 $\sum_{n=0}^{\infty} P(A_n) \text{ car la série } \sum P(A_n) \text{ converge, par hypothèse. À gauche, la limite } N \to \infty \text{ existe et vaut } P\left(\bigcup_{n \in \mathbb{N}} A_n\right) \text{ d'après le corollaire de la continuité croissante. Les inégalités larges passent à la limite, d'où la conclusion.}$

Corollaire 14

- 1. Une union finie ou dénombrable d'événements négligeables est un événement négligeable.
- 2. Une intersection finie ou dénombrable d'événements presque certains est un événement presque certain.

Preuve —

- Par σ-sous-additivité, la probabilité d'une union d'événements négligeables est inférieure à une somme de probabilités nulles, elle est donc nulle.
- 2. Puis on passe aux événements contraires : le contraire d'un événement presque certain est un événement négligeable et le contraire de l'union est l'intersection des contraires.

VI.4 L'INDÉPENDANCE

Définition 15

Soit un espace probabilisé (Ω, \mathscr{A}, P) . On dit que deux événements $A \in \mathscr{A}$ et $B \in \mathscr{A}$ sont **indépendants** si

$$P(A \cap B) = P(A) \times P(B)$$
.

Soit $(A_i)_{i\in I}$ une famille finie ou dénombrable d'événements. On dit que ces événements sont :

- deux à deux indépendants si

$$\forall (i,j) \in I^2, \quad i \neq j \implies P(A_i \cap A_j) = P(A_i) \times P(A_j) ;$$

— indépendants si, pour toute partie finie non vide $J\subset I,$

$$P\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}P(A_j).$$

Exercice 16 — $Soit\ A\ et\ B\ deux\ événements.\ Montrer\ que$:

- 1. $si\ A\ et\ B\ sont\ indépendants,\ alors\ A\ et\ \bar{B}\ aussi.$
- 2. si A est presque impossible, alors A et B sont indépendants.

L'indépendance implique l'indépendance deux à deux mais la réciproque est fausse, comme le prouve l'exercice suivant.

Exercice 17 — Voici une expérience aléatoire : on lance deux fois une pièce qui tombe sur Pile ou Face de manière équiprobable. Et voici quatre événements :

- A « La pièce tombe la première fois sur Pile »;
- B « La pièce tombe la deuxième fois sur Face »;
- C « La pièce tombe au moins une fois sur Face »;
- D « La pièce tombe deux fois du même côté ».

Montrer que les événements A, B et D sont deux à deux indépendants et ne sont pas indépendants. Montrer que les événements A et C ne sont pas indépendants.

Proposition 18

PROPOSITION 18 Si $(B_n)_{n\in\mathbb{N}}$ est une suite d'événements indépendants, alors $P\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\prod_{k=0}^nP(B_k).$

Preuve — D'après le corollaire 10, $P\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}P\left(\bigcap_{k=0}^nB_k\right)$. Et, d'après la définition 15 de l'indépendance d'une famille d'événements, $P\left(\bigcap_{k=0}^{n} B_{k}\right) = \prod_{k=0}^{n} P(B_{k}).$

Probabilité conditionnelle VI.5

Proposition-Définition 19

Soit (Ω, \mathscr{A}, P) un espace probabilisé. Soient A et B deux événements. Si la probabilité de l'événement An'est pas nulle, alors :

1. on appelle **probabilité de** B sachant A, et on note $P_A(B)$ ou P(B|A), le rapport

$$P_A(B) = P(B|A) = \frac{P(B \cap A)}{P(A)};$$

2. l'application $P_A: \mathscr{A} \to [0,1], \ X \mapsto P(X|A)$ est une probabilité sur l'espace probabilisable (Ω,\mathscr{A}) . On l'appelle probabilité sachant A.

Preuve — P_A est une probabilité (définition 6) car $P_A(\Omega) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1$ et, si $(B_n)_{n \in \mathbb{N}}$ est une suite d'événements deux à deux incompatibles, alors :

$$P_A\left(\bigcup_{n=0}^{+\infty}B_n\right) = \frac{P\left(\left(\bigcup_{n=0}^{+\infty}B_n\right)\cap A\right)}{P(A)}$$

$$= \frac{P\left(\bigcup_{n=0}^{+\infty}(B_n\cap A)\right)}{P(A)} \quad \text{par distributivit\'e de \cap par rapport `a`} \cup$$

$$= \frac{\sum_{n=0}^{\infty}P(B_n\cap A)}{P(A)} \quad \text{par σ-additivit\'e de P car l'union est disjointe}$$

$$= \sum_{n=0}^{\infty}P_A(B_n).$$

Proposition 20

Soient A un événement de probabilité non nulle et B un événement :

- 1. Si les événements A et B sont indépendants, alors $P_A(B) = P(B)$. Autrement dit : si B est indépendant de A, alors savoir A ne change pas la probabilité de B.
- 2. Si $A \subset B$, alors $P_A(B) = 1$, autrement dit : si on sait A, alors toutes les conséquences de A sont des événements presque certains. En particulier $P_A(A) = 1$.

Preuve —

1. Si
$$P(B \cap A) = P(B) \times P(A)$$
, alors $P_A(B) = \frac{P(B) \times P(A)}{P(A)} = P(B)$.

2. Si
$$A \subset B$$
, alors $B \cap A = A$, d'où $P_A(B) = \frac{P(A)}{P(A)} = 1$

Remarque 21 —

- 1. Attention à la notation $P(B \mid A)$:
 - ce n'est pas la probabilité P de « B | A » car « B | A » n'est pas un événement;
 - c'est la probabilité P_A de l'événement B.
- 2. Dans un espace probabilisable (Ω, \mathcal{A}) , on peut définir plusieurs probabilités :
 - la probabilité P_A est la probabilité calculée par un observateur qui sait que l'événement A a eu lieu ou aura lieu;
 - la probabilité P est la probabilité calculée par un observateur qui ne sait pas si l'événement A a eu lieu ou aura lieu.

Ainsi, la probabilité d'un événement dépend de cet événement mais aussi de l'observateur. Plus précisément de la connaissance que l'observateur a de l'univers des possibles.

Exercice 22 — On lance deux fois une pièce. Calculer :

- 1. la probabilité que la pièce tombe deux fois sur Pile sachant qu'elle tombe la première fois sur Pile;
- 2. la probabilité que la pièce tombe deux fois sur Pile sachant qu'elle tombe au moins une fois sur Pile.

LA FORMULE DES PROBABILITÉS TOTALES

Définition 23

Soit I un ensemble fini ou dénombrable. On dit qu'une famille d'événements $(A_i)_{i\in I}$ est un système complet d'événements si leur union est disjointe et certaine, autrement dit :

- 1. $\forall (i,j) \in I^2$, $i \neq j \implies A_i \cap A_j = \varnothing$; 2. $\bigcup_{i \in I} A_i = \Omega$.

On dit que c'est un système quasi complet d'événements si leur union est disjointe et presque certaine, autrement dit :

- $$\begin{split} &1. \ \forall (i,j) \in I^2, \quad i \neq j \implies A_i \cap A_j = \varnothing \,; \\ &2. \ P\left(\bigcup_i A_i\right) = 1. \end{split}$$

Remarque 24 —

- 1. Si on fait une expérience aléatoire, alors un unique événement du système complet se réalise.
- 2. Si A est un événement, alors $\{A, \bar{A}\}$ est un système complet d'événements.
- 3. Pour tout système quasi complet d'événements, $\sum_{i \in I} P(A_i) = 1$ à cause de la $\sigma-additivité$.

MÉTHODE 25 (Diviser pour régner) — Un système complet d'événements $(A_i)_{i\in I}$ permet de décomposer un événement B quelconque en une union d'événements deux à deux incompatibles : $\Omega = \bigcup_{i \in I} A_i$ et cette union

est disjointe, d'où $B = \bigcup_{i \in I} (B \cap A_i)$ par distributivité et cette union est disjointe, donc $P(B) = \sum_{i \in I} P(B \cap A_i)$

par σ -additivité. En particulier, si A est un événement, alors $P(B) = P(B \cap A) + P(B \cap \bar{A})$. Par suite, si les probabilités des événements A et \overline{A} sont non nulles, alors $P(B) = P(A) \cdot P(B \mid A) + P(\overline{A}) \cdot P(B \mid \overline{A})$.

La formule des probabilités totales généralise ce résultat aux systèmes quasi complets d'événements :

Théorème 26 (Formule des probabilités totales)

Soit (Ω, \mathscr{A}, P) un espace probabilisé. Si $(A_i)_{i \in I}$ est un système quasi complet d'événements, alors

$$P(B) = \sum_{i \in I} P(B \cap A_i)$$

pour tout événement B. Si, de plus, les événements A_i sont tous de probabilité non nulle, alors

$$P(B) = \sum_{i \in I} P(A_i) \cdot P(B \mid A_i).$$

Avec un système quasi complet d'événements ensuite : on complète la famille $(A_i)_{i\in I}$ avec l'événement $C=\Omega\setminus\bigcup_{i\in I}A_i$: on obtient alors un système complet d'événements, d'où la probabilité de tout événement B est :

$$P(B) = P(B \cap C) + \sum_{i \in I} P(B \cap A_i).$$

Or $P(B \cap C) = 0$ car, par croissance de la probabilité, $P(B \cap C) \leq P(C)$ et P(C) = 0. En effet l'union de C et de $\bigcup_{i \in I} A_i$ est disjointe et certaine, d'où $P(C) + P\left(\bigcup_{i \in I} A_i\right) = 1$. Or $P\left(\bigcup_{i \in I} A_i\right) = 1$, donc P(C) = 0.

Exercice 27 — On lance un dé à cinq faces. Calculer, pour chaque $n \in \mathbb{N}^*$, la probabilité u_n de l'événement S_n « la somme des résultats obtenus lors des n premiers lancers est paire ».

VI.7 LA FORMULE DES PROBABILITÉS COMPOSÉES

Soient deux événements A_1 et A_2 . Si on suppose que la probabilité P de A_1 n'est pas nulle, alors (par définition de la probabilité conditionnelle) :

$$P(A_1 \cap A_2) = P(A_1) \times P(A_2|A_1).$$

Cette formule est pratique car elle est chronologique. Dans les situations où A_1 a lieu avant A_2 , elle permet de suivre la flèche du temps :

- d'abord, l'observateur de l'expérience aléatoire utilise la probabilité P;
- puis il sait si A_1 a eu lieu et il utilise la probabilité P_{A_1} .

Exercice 28 — Une urne contient 5 boules blanches et 2 boules noires. On tire 2 boules l'une après l'autre et sans remise. Calculer la probabilité que les deux premières boules tirées soient blanches.

La formule $P(A_1 \cap A_2) = P(A_1) \times P(A_2|A_1)$ se généralise par récurrence et permet de calculer chronologiquement la probabilité d'une intersection finie d'événements qui ont lieu l'un après l'autre. À chaque étape, la connaissance de l'observateur est croissante et cet observateur utilise donc une nouvelle probabilité : d'abord P, puis P_{A_1} , puis $P_{A_1 \cap A_2}$, etc

Théorème 29 (Formule des probabilités composées)

Soient un espace probabilisé (Ω, \mathscr{A}, P) et une famille finie d'événements (A_1, \ldots, A_n) $(n \geq 2)$. Si la probabilité de $A_1 \cap \ldots \cap A_{n-1}$ n'est pas nulle, alors

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2) \times \cdots \times P(A_n | A_1 \cap \cdots \cap A_{n-1}).$$

Preuve — Par récurrence sur $n \geq 2$:

- Pour n=2, la formule $P(A_1 \cap A_2) = P(A_1) \times P(A_2|A_1)$ est vraie par définition de la probabilité conditionnelle.
- Supposons la propriété vraie jusqu'au rang n. Soit $A' = A_1 \cap \ldots \cap A_n$ tel que $P(A') \neq 0$. La probabilité de A' est $P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \ldots \cap A_{n-1})$ car $P(A_1 \cap \ldots \cap A_{n-1}) \neq 0$ (car $A' \subset A_1 \cap \ldots \cap A_{n-1}$ et la probabilité est croissante). Et $P(A' \cap A_{n+1}) = P(A') \times P(A_{n+1}|A')$. D'où la propriété est vraie à l'ordre n+1.
- Donc la propriété est vraie pour tout $n \geq 2$.

VI.8 LA FORMULE DE BAYES

Si A et B sont deux événements tels que $P(A) \neq 0$ et $P(B) \neq 0$, alors (par définition des probabilités conditionnelles) :

$$P(A) \times P(B|A) \stackrel{*}{=} P(A \cap B) \stackrel{**}{=} P(B) \times P(A|B).$$

Si l'événement A a lieu avant l'événement B, alors :

- la formule * est un cas particulier de la formule des probabilités composées, elle est chronologique (elle suit la flèche du temps, du passé vers l'avenir, de la cause vers la conséquence);
- la formule ** est anti-chronologique (elle remonte la flèche du temps, de l'avenir vers le passé, de la conséquence vers la cause).

On vient de démontrer et d'interpréter la formule de Bayes :

THÉORÈME 30 (Formule de Bayes)

Soient un espace probabilisé (Ω, \mathcal{A}, P) et deux événements A et B. Si $P(A) \neq 0$ et $P(B) \neq 0$, alors

$$P(A|B) = \frac{P(A) \times P(B|A)}{P(B)}.$$

MÉTHODE 31 — Pour résoudre l'exercice suivant, on utilise à la fois la formule des probabilités totales

$$P(B) = \sum_{i \in I} P(A_i) \cdot P(B \mid A_i)$$

et la formule de Bayes, ce qui donne la formule :

$$\forall j \in I, \quad P(A_j|B) = \frac{P(A_j) \times P(B|A_j)}{\sum_{i \in I} P(A_i) \cdot P(B \mid A_i)}.$$

sous l'hypothèse que $(A_i)_{i\in I}$ est un système quasi complet d'événements tous de probabilité non nulle.

Exercice 32 — Un joueur tire une carte dans un jeu de 52 cartes (il y a 4 as dans ce jeu). On suppose qu'un tricheur est certain de tirer un as et qu'il y a, parmi les joueurs, une proportion $p \in]0,1[$ de tricheurs :

- quelle est la probabilité qu'un joueur, pris au hasard, tire un as?
- le joueur vient de tirer un as, quelle est la probabilité qu'il ait triché?