D.S. N° 3 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient un exercice et un problème.

On attachera un grand soin à la rédaction. En particulier, chaque résultat ou conclusion devra être encadré.

On peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

EXERCICE

La fonction $F:\mathbb{R}\to\mathbb{R},\ x\mapsto\int_0^x \frac{1}{\operatorname{ch} t}\,dt$ est appelée le **gudermannien**.

1. Montrer que les intégrales impropres

$$I = \int_0^{+\infty} \frac{1}{\operatorname{ch} t} dt$$
 et $J = \int_0^{+\infty} \frac{t}{\operatorname{sh} t} dt$

sont convergentes.

2. Pour tout $x \in \mathbb{R}$, calculer

$$F(x) = \int_0^x \frac{1}{\operatorname{ch} t} \, dt.$$

- 3. Quelle est la valeur de l'intégrale I?
- 4. Dresser le tableau des variations de la fonction F et tracer la courbe d'équation y = F(x) ainsi que ses asymptotes.
- 5. On rappelle que $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$

En déduire la valeur de $\sum_{p=0}^{\infty} \frac{1}{(2p+1)^2}$.

- 6. Calculer, pour chaque $k \in \mathbb{N}^*$, l'intégrale $J_k = \int_0^{+\infty} t \, \mathrm{e}^{-kt} \, dt$.
- 7. Montrer que $J = 2\sum_{n=0}^{n} J_{2p+1} + R_n$,

où
$$R_n = \int_0^{+\infty} \frac{2t}{e^{2t} - 1} e^{-(2n+1)t} dt$$
.

- 8. Montrer que $0 \le R_n \le \frac{1}{2n+1}$.
- 9. Quelle est la valeur de l'intégrale J?

Problème – Endomorphismes nilpotents

Notations

Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

On pose
$$J_1 = (0) \in \mathcal{M}_1(\mathbb{C})$$
 et, pour chaque entier $\alpha \geq 2$, $J_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\alpha}(\mathbb{C}).$

Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs

$$\operatorname{diag}(A, B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathcal{M}_{n+m}(\mathbb{C}).$$

Plus généralement, si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \cdots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note

$$\operatorname{diag}(A_1, A_2, \dots, A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1 + n_2 + \dots + n_k}(\mathbb{C}).$$

Partie A - Étude d'un exemple

Pour chaque complexe eta, on définit la matrice A_eta de $\mathcal{M}_3(\mathbb{C})$ par :

$$A_{\beta} = \begin{pmatrix} 0 & 0 & \beta + 1 \\ 1 & -1 & 0 \\ -1 & 1 & \beta + 1 \end{pmatrix}.$$

- 1. Calculer le polynôme caractéristique de la matrice A_{β} .
- 2. Pour quelle(s) valeur(s) du paramètre β la matrice A_{β} est-elle diagonalisable?
- 3. Montrer que la matrice A_0 est nilpotente et déterminer son indice de nilpotence.
- 4. Montrer que la matrice A_0 est semblable à la matrice J_3 .
- 5. On suppose que $\beta \neq 0$. La matrice A_{β} est-elle nilpotente?

Partie B - Matrices nilpotentes (anti)symétriques

Soient u un endomorphisme nilpotent du $\mathbb{C}-$ espace vectoriel E et p son indice.

- 6. Montrer que le spectre de u est égal à $\{0\}$.
- 7. Montrer que la trace de u est nulle.
- 8. Soit $M = (m_{i,j})_{(i,j) \in [\![1,n]\!]^2}$ une matrice de $\mathcal{M}_n(\mathbb{R})$. Calculer $\operatorname{tr}(M^TM)$ et en déduire qu'une matrice de $\mathcal{M}_n(\mathbb{R})$ est symétrique et nilpotente si, et seulement si, elle est nulle.
- 9. Déterminer toutes les matrices M de $\mathcal{M}_n(\mathbb{R})$ qui sont antisymétriques et nilpotentes.
- 10. Quelle est la dimension du sous-espace vectoriel $\mathcal{S}_n(\mathbb{R})$ des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$?
- 11. Soient \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$ et V un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ inclus dans \mathcal{N} . Montrer que dim $V \leq \frac{n(n-1)}{2}$.
- 12. Exhiber un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ inclus dans \mathcal{N} et de dimension égale à $\frac{n(n-1)}{2}$.

Partie C - Sous-espaces vectoriels stables par un endomorphisme nilpotent

Soit u un endomorphisme nilpotent de E d'indice p.

- 13. Montrer qu'il existe un vecteur x de E tel que la famille $\left(u^k(x)\right)_{0\leqslant k\leqslant p-1}$ est libre.
 - Dans la suite, on note a un tel vecteur et \mathcal{B}_a la famille libre $(u^k(a))_{0 \leqslant k \leqslant p-1}$.
- 14. Montrer que l'indice p de u est inférieur ou égal à la dimension n de E.
- 15. Montrer que le sous-espace vectoriel C_a engendré par la famille \mathcal{B}_a est stable par u.
- 16. Soit v l'endomorphisme induit par u sur C_a . Déterminer la matrice de v dans la base \mathcal{B}_a .
- 17. Soit l'endomorphisme $f: \mathbb{C}_{p-1}[X] \to \mathbb{C}_{p-1}[X], \ Q \mapsto Q'$. Montrer qu'il existe exactement p+1 sous-espaces vectoriels de $\mathbb{C}_{p-1}[X]$ (que l'on déterminera) stables par l'endomorphisme f.
- 18. Construire une base de $\mathbb{C}_{p-1}[X]$ dans laquelle l'endomorphisme f est représenté par la matrice J_p .
- 19. En déduire tous les sous-espaces vectoriels de C_a stables par u.

Partie D - Réduction des endomorphismes nilpotents d'indice $p \leq 2$

- 20. Que peut-on dire d'un endomorphisme nilpotent d'indice 1?
- 21. Soit A une matrice de $\mathcal{M}_2(\mathbb{C})$. Montrer que la matrice A est nilpotente si, et seulement si, son déterminant et sa trace sont nuls.
 - On suppose dans la suite que la dimension n de E est supérieure ou égale à 3. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang r.
- 22. Montrer que $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$ et que $2r \leq n$.
- 23. On suppose que $\operatorname{Im}(u) = \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \dots, e_r de E tels que la famille $(e_1, u(e_1), e_2, u(e_2), \dots, e_r, u(e_r))$ est une base de E.
- 24. Exprimer la matrice de u dans cette base. (On utilisera les matrices J_{α} et la notation diag indiquées au début de l'énoncé.)
- 25. On suppose $\text{Im}(u) \neq \text{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenant à Ker(u) tels que $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r), v_1, v_2, \ldots, v_{n-2r})$ est une base de E.
- 26. Quelle est la matrice de u dans cette base?