COLLE Nº 10

Séries de fonctions

Exercice 1. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie sur $[0, +\infty[$ par

$$f_n(x) = nx^2 e^{-x\sqrt{n}}.$$

- 1. Montrer que la série de fonctions $\sum f_n$ converge simplement sur $[0, +\infty[$.
- 2. Montrer que la convergence de la série $\sum f_n$ n'est pas normale sur $[0, +\infty[$.
- 3. Soit a > 0. Montrer que la convergence est normale sur $[a, +\infty[$.
- 4. Soit un entier naturel p > 0. Montrer que $\sum_{n=1}^{\infty} f_n\left(\frac{2}{\sqrt{p}}\right) \ge \frac{4}{e^2}$.
- 5. La série de fonctions $\sum f_n$ converge-t-elle uniformément sur $[0, +\infty[? \text{sur }]0, +\infty[?]$ \triangleright Trois méthodes dans le corrigé.

Exercice 2. Soit, pour tout $k \in \mathbb{N}^*$ et pour tout réel x > -1, $f_k(x) = \frac{1}{k} - \frac{1}{k+x}$.

1. Montrer que $S(x) = \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right)$ est défini pour tout réel x > -1.

Et que la fonction S est monotone sur l'intervalle $]-1,+\infty[$.

- 2. Soit a > -1. Montrer que la série de fonctions $\sum f_k$ converge normalement sur]-1,a]. Et que la fonction S est continue sur l'intervalle $]-1,+\infty[$.
- 3. Montrer que, pour tout x > -1:

$$S(x+1) - S(x) = \frac{1}{1+x}.$$

Et déterminer un équivalent de S(x) quand le réel x tend vers -1^+ .

- 4. Déterminer un équivalent de S(n) quand l'entier n tend vers ∞ .
- 5. Montrer que la fonction S possède une limite en $+\infty$ et déterminer cette limite.
- 6. Déterminer un équivalent de S(x) quand x tend vers $+\infty$.