Corrigé du D.S. nº 4 de mathématiques

Exercice 1.

1. (a) Soit $n \in \mathbb{N}^*$: $E_n = F_1 \cap \cdots \cap F_{n-1} \cap \overline{F_n}$ et ces événements sont indépendants, donc

$$P(E_n) = P(F_1) \times \cdots \times P(F_{n-1}) \times P(\overline{F_n}) = \frac{2}{3^n}.$$

(b) Les événements E_n sont disjoints deux à deux, d'où : par σ -additivité, $P\left(\bigcup_{n\in\mathbb{N}^*}E_n\right)=\sum_{n=1}^{\infty}P(E_n)=$

$$\sum_{n=1}^{\infty} \frac{2}{3^n} = \frac{2}{3} \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k = \frac{2}{3} \frac{1}{1 - \frac{1}{3}} = 1. \text{ Donc l'événement } \bigcup_{n \in \mathbb{N}^*} E_n \ll \text{la pièce tombe au moins une fois sur PILE} \gg \text{ est presque certain.}$$

AUTRE MÉTHODE — Le contraire de l'événement « la pièce tombe au moins une fois sur PILE » est l'événement « la pièce tombe toujours sur FACE », égal à $\bigcap_{n \in \mathbb{N}^*} F_n$. Par continuité décrois-

sante,
$$P\left(\bigcap_{n\in\mathbb{N}^*}F_n\right)=\lim_{n\to\infty}P\left(\bigcap_{k=1}^nF_n\right)$$
. Or, pour chaque $n\in\mathbb{N}^*$, $P\left(\bigcap_{k=1}^nF_k\right)=\left(\frac{1}{3}\right)^n$ car les événements F_k sont indépendants.

- 2. (a) $D_2 = \overline{F_1} \cap \overline{F_2}$ et ces événements sont indépendants, donc $P(D_2) = P(\overline{F_1}) \cdot P(\overline{F_2}) = \frac{4}{9}$.
 - (b) $P(D_{n+2} | F_1) = u_{n+1}$ car on sait que la pièce tombe la première fois sur FACE (ce qui remet le compteur à zéro). Donc D_{n+2} se réalise si, et seulement si, on obtient le premier double PILE après encore n+1 lancers.

 $P(D_{n+2} | \overline{F_1} \cap F_2) = u_n$ car on sait que la pièce tombe la première fois sur Pile et la deuxième fois sur Face (ce qui remet le compteur à zéro). Donc D_{n+2} se réalise si, et seulement si, on obtient le premier double PILE après encore n lancers.

(c) $D_{n+2} = (D_{n+2} \cap F_1) \bigcup (D_{n+2} \cap \overline{F_1})$ et $D_{n+2} \cap \overline{F_1} = (D_{n+2} \cap \overline{F_1} \cap F_2) \bigcup (D_{n+2} \cap \overline{F_1} \cap \overline{F_2}) = D_{n+2} \cap \overline{F_1} \cap F_2$ car l'événement $D_{n+2} \cap \overline{F_1} \cap \overline{F_2}$ est impossible.

D'où $D_{n+2} = (D_{n+2} \cap F_1) \bigcup (D_{n+2} \cap \overline{F_1} \cap F_2)$. L'union est disjointe, d'où

$$P(D_{n+2}) = P(D_{n+2} \cap F_1) + P(D_{n+2} \cap \overline{F_1} \cap F_2).$$

Or $P(D_{n+2} \cap F_1) = P(F_1) \cdot P(D_{n+2} \mid F_1) = \frac{1}{3} \cdot P(D_{n+2} \mid F_1)$ et $P(D_{n+2} \cap \overline{F_1} \cap F_2) = P(\overline{F_1} \cap F_2) \cdot P(D_{n+2} \mid \overline{F_1} \cap F_2) = \frac{1}{3} \cdot P(D_{n+2} \mid \overline{F_1} \cap F_2)$ car les événements $\overline{F_1}$ et F_2 sont indépendants. Donc

$$u_{n+2} = \frac{1}{3} \cdot u_{n+1} + \frac{2}{9} \cdot u_n.$$

(d) L'équation caractéristique de la suite (u_n) est $\lambda^2 = \frac{1}{3}\lambda + \frac{2}{9}$. Elle a deux solutions distinctes : $-\frac{1}{3}$ et $\frac{2}{3}$. D'où $\exists K \in \mathbb{R}, \ \exists L \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ u_n = K \cdot \left(-\frac{1}{3}\right)^n + L \cdot \left(\frac{2}{3}\right)^n$. Les constantes K et L sont fixées par les deux conditions initiales $u_1 = 0$ et $u_2 = \frac{4}{9}$. D'où $K = \frac{4}{3}$ et $L = \frac{2}{3}$. Donc

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{4}{3} \cdot \left(-\frac{1}{3}\right)^n + \frac{2}{3} \cdot \left(\frac{2}{3}\right)^n.$$

(e) L'événement « On n'obtient jamais de double PILE » est le contraire \overline{D} de l'événement $D = \bigcup_{n \in \mathbb{N}^*} D_n$. L'union est disjointe, d'où : par σ -additivité, $P(D) = \sum_{n=1}^{\infty} u_n = K \cdot \left(-\frac{1}{3}\right) \frac{1}{1 - \frac{1}{3}} + L \cdot \frac{2}{3} \frac{1}{1 - \frac{2}{3}} = 1$. Donc $P(\overline{D}) = 1 - P(D) = 0$. L'événément \overline{D} est donc presque impossible.

Exercice 2 (CCINP Maths PC 2024).

Partie I - Existence de la solution du problème étudié

1. Soit $x \in]0; +\infty[: \frac{1}{n}$ et $\frac{x}{n}$ tendent vers 0 quand n tend vers ∞ , d'où (développement limité) :

$$u_n(x) = x \left(\frac{1}{n} - \frac{1}{2n^2} + \mathop{o}_{n \to \infty} \left(\frac{1}{n^2} \right) \right) - \left(\frac{x}{n} - \frac{x^2}{2n^2} + \mathop{o}_{n \to \infty} \left(\frac{1}{n^2} \right) \right) = \frac{x^2 - x}{2n^2} + \mathop{o}_{n \to \infty} \left(\frac{1}{n^2} \right)$$

est équivalent à $\frac{x^2-x}{2n^2}$ qui ne change pas de signe. Par comparaison aux séries de Riemann (avec 2>1), on en déduit que la série numérique $\sum u_n(x)$ est convergente. Donc la série de fonctions $\sum u_n$ converge simplement sur $]0,+\infty[$.

2. Soit $n \in \mathbb{N}^*$. $x \mapsto 1 + \frac{x}{n}$ est \mathcal{C}^1 sur $]0; +\infty[$, à valeurs dans \mathbb{R}^{+*} donc, par composition, $x \mapsto \ln\left(1 + \frac{x}{n}\right)$ est de classe \mathcal{C}^1 sur $]0; +\infty[$. Par somme, la fonction u_n est donc de classe \mathcal{C}^1 sur $]0; +\infty[$. De plus, pour tout x > 0,

$$u_n'(x) = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} \frac{1}{1 + \frac{x}{n}} = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n+x} = -\frac{1}{n+x} + \frac{1}{n} + \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} = \frac{x}{n(n+x)} + \varepsilon_n$$

où $\varepsilon_n = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n}$. Par développement limité, $\varepsilon_n \sim -\frac{1}{2n^2}$, d'où $|\varepsilon_n| \sim \frac{1}{2n^2}$. Or la série $\sum \frac{1}{n^2}$ converge. Donc la série $\sum \varepsilon_n$ converge absolument.

3. Soit $(a,b) \in]0; +\infty[^2$ tel que a < b. Pour tous $x \in [a,b]$ et $n \in \mathbb{N}^*$, d'après l'inégalité triangulaire (en remarquant que x est positif),

$$|u_n'(x)| \le \frac{x}{n(n+x)} + |\varepsilon_n|$$

Or $x \in [a, b]$, donc $n(n+x) \ge n(n+a) > 0$ et $\frac{x}{n(n+x)} \le \frac{b}{n(n+a)}$ puis

$$|u_n'(x)| \le \frac{b}{n(n+a)} + |\varepsilon_n|$$

Quand n tend vers l'infini, $\frac{b}{n(n+a)} \sim \frac{b}{n^2}$ qui ne change pas de signe, donc la série $\sum \frac{b}{n(n+a)}$ converge. De plus, d'après la question précédente, $\sum |\varepsilon_n|$ converge donc la série $\sum \left(\frac{b}{n(n+a)} + |\varepsilon_n|\right)$ converge. On conclut que la série de fonctions $\sum u_n'$ converge normalement sur [a,b].

- 4. i) La série de fonctions $\sum u_n$ converge simplement sur [a, b].
 - Pour tout $n \in \mathbb{N}^*$, u_n est de classe \mathcal{C}^1 sur [a,b]

— La série de fonctions $\sum u'_n$ converge normalement, donc uniformément, sur [a,b].

D'après le théorème de dérivation terme à terme, la fonction $x \mapsto \sum_{n=1}^{\infty} u_n(x)$ est de classe \mathcal{C}^1 sur [a,b]. Ceci est vrai sur tout segment [a,b] inclus dans $]0;+\infty[$ donc vrai sur $]0,+\infty[$. En ajoutant la fonction ln, elle aussi \mathcal{C}^1 , on conclut que φ est de classe \mathcal{C}^1 sur $]0,+\infty[$. De plus, pour tout x>0,

$$\varphi'(x) = -\frac{1}{x} + \sum_{n=1}^{+\infty} \frac{x}{n(n+x)} + \sum_{n=1}^{\infty} \varepsilon_n$$

ii) Soit $x \in]0; +\infty[: \varphi(x+1) - \varphi(x) = -\ln(x+1) + \ln(x) + \sum_{n=1}^{\infty} v_n(x), \text{ où }]$

$$v_n(x) = \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x+1}{n}\right) + \ln\left(1 + \frac{x}{n}\right)$$

$$= \ln(n+1) - \ln(n) - \ln(n+x+1) + \ln(n) + \ln(n+x) - \ln(n)$$

$$= \ln(n+1) - \ln(n) + \ln(n+x) - \ln(n+1+x)$$

Par téléscopage, pour tout $N \ge 1$,

$$\sum_{n=1}^{N} v_n(x) = \ln(N+1) - \ln(1) + \ln(1+x) - \ln(N+1+x) = \ln(1+x) - \ln\left(1 + \frac{x}{N+1}\right).$$

Puis, en faisant tendre N vers l'infini : $\varphi(x+1) - \varphi(x) = -\ln(x+1) + \ln(x) + \ln(1+x) - 0$ donc

$$\varphi(x+1) - \varphi(x) = \ln(x)$$

- iii) La fonction φ' est la somme d'une constante $\sum_{n=1}^{\infty} \varepsilon_n$, de la fonction $x \mapsto -\frac{1}{x}$ et des fonctions $x \mapsto \frac{x}{n(n+x)} = \frac{1}{n} \frac{1}{n+x}$ qui sont toutes croissantes sur $]0, +\infty[$. On en déduit que φ' est croissante.
- iv) Pour tout $n \in \mathbb{N}^*$, $u_n(1) = 0$ et $\ln(1) = 0$ donc $\varphi(1) = 0$. La fonction φ vérifie donc les conditions de (C).

Partie II - Unicité de la solution

- 5. D'après la condition (ii) de (C), vérifiée par φ et par $g: \forall x > 0$, h(x+1) = h(x). D'après la condition (i) de (C), h est la différence de deux fonctions C^1 , donc on peut dériver de part et d'autre de cette égalité pour obtenir : $\forall x > 0$, h'(x+1) = h'(x).
- 6. Soient $x \in]0,1]$ et $p \in \mathbb{N}^*$: $h'(x+p) = \varphi'(x+p) g'(x+p)$. La fonction φ' est croissante d'après la condition (iii) de (C). Or $p \le x+p \le p+1$ donc $\varphi'(p) \le \varphi'(x+p) \le \varphi'(1+p)$. De même $g'(p) \le g'(x+p) \le g'(1+p)$ donc $-g'(1+p) \le -g'(x+p) \le -g'(p)$. En additionnant, on obtient:

$$\varphi'(p) - g'(1+p) \le h'(x+p) \le \varphi'(1+p) - g'(p).$$

En dérivant la condition (ii) de (C), on obtient $g'(1+p)-g'(p)=\frac{1}{p}$ donc $g'(1+p)=g'(p)+\frac{1}{p}$. Par définition de $h, h'(p)=\varphi'(p)-g'(p)$ donc $\varphi'(p)=h'(p)+g'(p)$. En faisant la différence des deux relations obtenues,

$$\varphi'(p) - g'(1+p) = h'(p) - \frac{1}{p}$$

On en déduit que $h'(x+p) \ge h'(p) - \frac{1}{p}$ puis que $h'(x+p) - h'(p) \ge -\frac{1}{p}$. En échangeant les rôles joués par φ et g dans ce qui précède, on obtient $h'(x+p) - h'(p) \le \frac{1}{p}$. D'où l'encadrement $-\frac{1}{p} \le h'(x+p) - h'(x) \le \frac{1}{p}$ qui prouve que $|h'(x+p) - h'(x)| \le \frac{1}{p}$.

7. Soient $x \in]0,1]$ et $p \in \mathbb{N}^*$. D'après 5, la fonction h' est 1-périodique donc h'(x+p)=h'(x) et h'(p)=h'(1) et, de la question précédente, on tire alors :

$$|h'(x) - h'(1)| \le \frac{1}{p}$$

pour tout $p \in \mathbb{N}^*$. Cette inégalité large passe à la limite $p \to \infty$, d'où $|h'(x) - h'(1)| \le 0$, donc h'(x) = h'(1). La fonction h' est donc constante sur]0,1]. Par ailleurs, elle est 1-périodique, donc elle est constante sur $]0,+\infty[$.

8. On note $c \in \mathbb{R}$ tel que, pour tout x > 0, h'(x) = c. Alors, pour tout x > 0, h(x) = c(x - 1) car h(1) = 0 d'après la condition (iv) de (C). De plus, pour tout x > 0, h(x + 1) = h(x), donc cx = cx - c et c = 0. Finalement, pour tout x > 0, h(x) = 0 et

$$\varphi = g$$

Partie III - La formule de duplication

9. Soit $N \in \mathbb{N}^*$.

$$\sum_{n=1}^{N} u_n \left(\frac{1}{2}\right) = \frac{1}{2} \sum_{n=1}^{N} \left(\ln(n+1) - \ln(n)\right) - \sum_{n=1}^{N} \ln\left(\frac{2n+1}{2n}\right)$$
$$= \frac{1}{2} \ln(N+1) - \ln\left(\frac{\prod_{n=1}^{N} (2n+1)}{\prod_{n=1}^{N} (2n)}\right)$$

 $\prod_{n=1}^{N} (2n) = 2^{N}N!$ et en multipliant, divisant par ce produit des pairs pour compléter le produit des

impairs,
$$\prod_{n=1}^{N} (2n+1) = (2N+1) \frac{\prod_{k=1}^{2N} k}{2^N N!}. \text{ Ainsi, } \sum_{n=1}^{N} u_n \left(\frac{1}{2}\right) = \frac{1}{2} \ln(N+1) - \ln\left(\frac{(2N+1)(2N)!}{(2^N N!)^2}\right). \text{ Donc}$$
$$\exp\left(\sum_{n=1}^{N} u_n \left(\frac{1}{2}\right)\right) = \frac{\sqrt{N+1}(2^N N!)^2}{(2N+1)(2N)!}$$

10. D'après la formule de Stirling, $N! \sim \sqrt{2\pi N} \left(\frac{N}{\mathrm{e}}\right)^N$, donc $(2N)! \sim \sqrt{2\pi} (2N)^{2N+1/2} e^{-2N}$. Par produit et quotient d'équivalents,

$$\exp\left(\sum_{n=1}^N u_n\left(\frac{1}{2}\right)\right) \sim \frac{N^{1/2}2^{2N}(2\pi)N^{2N+1}e^{-2N}}{(2N)\sqrt{2\pi}(2N)^{2N+1/2}e^{-2N}} \sim \frac{\sqrt{2\pi}2^{2N}N^{2N+3/2}}{2^{2N+3/2}N^{2N+3/2}} \sim \frac{\sqrt{\pi}}{2}.$$

D'où $\exp\left(\sum_{n=1}^N u_n\left(\frac{1}{2}\right)\right) \underset{N\to\infty}{\longrightarrow} \frac{\sqrt{\pi}}{2}$. Par continuité de la fonction $\ln, \sum_{n=1}^{+\infty} u_n\left(\frac{1}{2}\right) = \frac{1}{2}\ln(\pi) - \ln(2)$ donc $\varphi\left(\frac{1}{2}\right) = \frac{1}{2}\ln(\pi)$. Or $\psi(1) = 0 + \varphi(1/2) + \varphi(1) - \frac{1}{2}\ln(\pi)$ avec $\varphi(1) = 0$, donc $\psi(1) = 0$.

- 11. Montrons que ψ vérifie les conditions de (C):
 - (i) Par composition et somme, ψ est de classe \mathcal{C}^1 sur $]0, +\infty[$.
 - (ii) Soit x > 0.

$$\psi(x+1) - \psi(x) = \ln(2) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+2}{2}\right) - \varphi\left(\frac{x+1}{2}\right)$$

$$= \ln(2) + \varphi\left(\frac{x}{2} + 1\right) - \varphi\left(\frac{x}{2}\right)$$

$$= \ln(2) + \ln\left(\frac{x}{2}\right)$$

$$= \ln(x)$$

(iii) Pour tout x > 0,

$$\psi'(x) = \ln(2) + \frac{1}{2}\varphi'\left(\frac{x}{2}\right) + \frac{1}{2}\varphi'\left(\frac{x+1}{2}\right)$$

La fonction φ' est croissante donc, par somme de deux fonctions croissantes, ψ' est croissante sur $]0, +\infty[$.

(iv) D'après la question précédente, $\psi(1) = 0$.

La fonction ψ vérifie les conditions de (C) donc, par unicité, $\psi = \varphi$ ce qui conduit à

$$\forall x > 0, \ (x-1)\ln(2) + \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = \varphi(x) + \frac{1}{2}\ln(\pi)$$

Exercice 3 (CCINP Maths 2 MP 2016).

1. (a) Le polynôme $H_0 = 1$ est bien unitaire et de degré 0, ce qui initialise la récurrence. Si le polynôme H_n est unitaire et de degré n, alors le polynôme XH_n est unitaire et son degré, égal à n+1, est strictement supérieur à celui de H'_n , d'où H_{n+1} est unitaire et deg $(H_{n+1}) = n+1$.

Donc, pour chaque $n \in \mathbb{N}$, le polynôme H_n est unitaire et de degré n

(b) Comme $H_0 = 1$ et $H_1 = XH_0 - H_0' = X$, il est vrai que $H_1' = H_0$, ce qui initialise la récurrence. Si $H_{n+1}' = (n+1)H_n$, alors :

— d'une part, $H_{n+2} = XH_{n+1} - (n+1)H_n$, d'où (en dérivant) $H'_{n+2} = H_{n+1} + XH'_{n+1} - (n+1)H'_n$;

— d'autre part, $XH'_{n+1} = (n+1)XH_n$.

D'où $H'_{n+2} = H_{n+1} + (n+1)XH_n - (n+1)H'_n = H_{n+1} + (n+1)(XH_n - H'_n) = H_{n+1} + (n+1)H_{n+1}$ par définition de H_{n+1} . Donc $H'_{n+2} = (n+2)H_{n+1}$, ce qui rend la propriété héréditaire.

Finalement, $H'_{n+1} = (n+1)H_n$ pour tout $n \in \mathbb{N}$.

2. (a) Soient P et Q deux polynômes. Si l'un d'eux est nul, l'intégrale $\langle P|Q\rangle$ est nulle. Sinon, cette intégrale converge si, et seulement si les deux intégrales de 0 à $+\infty$ et de $-\infty$ à 0 convergent. Soient alors aX^p et bX^q les termes dominants respectifs des polynômes P et Q: la première intégrale est de même nature que $\int_0^{+\infty} x^{p+q} \mathrm{e}^{-x^2/2} \, dx \, \mathrm{car} \, P(x)Q(x)\mathrm{e}^{-x^2/2} \, \underset{+\infty}{\sim} \, abx^{p+q}\mathrm{e}^{-x^2/2}$. Or

 $x^{p+q}e^{-x^2/2} = o_{+\infty}(e^{-x})$ et $\int_0^{+\infty} e^{-x} dx$ converge. La première intégrale est donc convergente et, de

même, la deuxième. Finalement, l'intégrale $\int_{-\infty}^{+\infty} P(x)Q(x)e^{-x^2/2} dx$ est convergente.

- (b) Soient deux réels λ et μ et trois polynômes P, Q et R:
 - de P(x)Q(x) = Q(x)P(x) pour tout $x \in \mathbb{R}$, on déduit que $\langle P|Q \rangle = \langle Q|P \rangle$;
 - par linéarité de l'intégrale, $\langle \lambda P + \mu Q | R \rangle = \lambda \langle P | R \rangle + \mu \langle Q | R \rangle$, d'où la linéarité à gauche et, par symétrie, la bilinéarité;
 - de $P^2(x) \ge 0$ et $e^{-x^2/2} \ge 0$ pour tout $x \in \mathbb{R}$, on déduit que $\langle P|P\rangle$ est positif;
 - si $\langle P|P\rangle = 0$, alors $P^2(x)\mathrm{e}^{-x^2/2} = 0$ pour tout $x \in \mathbb{R}$ car la fonction $x \mapsto P^2(x)\mathrm{e}^{-x^2/2}$ est positive et continue. Or $\mathrm{e}^{-x^2/2} \neq 0$ pour tout $x \in \mathbb{R}$, donc P(x) = 0 pour tout $x \in \mathbb{R}$. Le polynôme P a une infinité de racines, il est donc nul.

Finalement, la forme $\langle\cdot|\cdot\rangle$ est bilinéaire, symétrique et définie positive.

(c) Calculons l'intégrale $\langle P'|H_n\rangle$ en intégrant par parties : les fonctions u et v définies sur \mathbb{R} par $\begin{cases} u(x) = P(x) \\ v(x) = H_n(x) \mathrm{e}^{-x^2/2} \end{cases}$ sont de classe \mathcal{C}^1 et $\begin{cases} u'(x) = P'(x) \\ v'(x) = [H'_n(x) - xH_n(x)] \mathrm{e}^{-x^2/2} \end{cases}$.

De plus, $[u(x)v(x)]_{-\infty}^{+\infty} = 0$ par croissances comparées, d'où

$$\langle P'|H_n\rangle = \int_{-\infty}^{+\infty} u'(x)v(x) dx = -\int_{-\infty}^{+\infty} u(x)v'(x) dx = -\langle P|H'_n - XH_n\rangle = \langle P|H_{n+1}\rangle$$

par définition de H_{n+1} . Donc $\langle P'|H_n\rangle = \langle P|H_{n+1}\rangle$ pour tous $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$.

(d) Soient i et j deux entiers naturels distincts. D'après la question 1) b) et la question précédente, on a :

$$\langle H_i|H_j\rangle = \frac{1}{i+1}\langle H'_{i+1}|H_j\rangle = \frac{1}{i+1}\langle H_{i+1}|H_{j+1}\rangle$$

Et, par symétrie, on a aussi $\langle H_i|H_j\rangle=\frac{1}{j+1}\langle H_{i+1}|H_{j+1}\rangle$. Ainsi, comme $i\neq j$, on en déduit $\langle H_i|H_j\rangle=0$.

On a prouvé que les polynômes de Hermite sont orthogonaux deux à deux.

- 3. (a) L'application φ est linéaire et, pour tout $P \in \mathbb{R}_n[X]$, $\deg(\varphi(P)) \leq \max(\deg(XP'), \deg(P''))$. Or $\deg(XP') = \deg(X) + \deg(P') \leq 1 + \deg(P) 1$ et $\deg(P'') \leq \deg(P) 2$. Donc $\mathbb{R}_n[X]$ est stable par φ .
 - (b) Pour chaque $k \in [0, n]$, le polynôme H_k est non nul et

$$\varphi(H_k) = XH'_k - H''_k$$

$$= (XH_k - H'_k)' - H_k$$

$$= H'_{k+1} - H_k \quad \text{par definition de } H_{k+1}$$

$$= (k+1)H_k - H_k \quad \text{d'après la question 1b}$$

$$= kH_k$$

Pour tout $k \in [0, n]$, le polynôme H_k est un vecteur propre de φ associé à la valeur propre k

(c) On déduit de la question précédente que φ possède au moins $\operatorname{Card}(\llbracket 0, n \rrbracket) = n+1$ valeurs propres distinctes deux à deux. Comme $\dim \mathbb{R}_n[X] = n+1$, il en a exactement n+1, ce qui implique que

 φ est diagonalisable et $\mathrm{Sp}(\varphi) = [\![0,n]\!]$

4. (a) Les polynômes H_0, \dots, H_{n-1} sont de degrés échelonnés de 0 à n-1, ils forment donc une base de $\mathbb{R}_{n-1}[X]$. Le polynôme H_n est orthogonal à chacun des vecteurs de cette base car les polynômes de

Hermite sont orthogonaux deux à deux. On en déduit que

le polynôme H_n est orthogonal à $\mathbb{R}_{n-1}[X]$.

Si p < n, alors $\deg(S) < n$, d'où $S \in \mathbb{R}_{n-1}[X]$, donc

$$\langle S \mid H_n \rangle = 0.$$

(b) Par construction du polynôme S, toute racine réelle du polynôme $S \cdot H_n$ est de multiplicité paire. La fonction $x \mapsto S(x) \cdot H_n(x)$ est donc de signe constant sur \mathbb{R} . De plus, les deux polynômes S et H_n étant unitaires, il en va de même de leur produit, d'où $\lim_{x \to +\infty} S(x)H_n(x) = +\infty$.

Donc

 $S(x) \cdot H_n(x)$ est positif pour tout x dans \mathbb{R}

(c) Par l'absurde : si p < n, alors $\int_{-\infty}^{+\infty} S(x) H_n(x) e^{-x^2/2} dx = 0$ d'après 4a. Or la fonction $x \mapsto S(x) H_n(x) e^{-x^2/2}$ est continue et, d'après la question précédente, elle est positive. De son intégrale nulle, on déduit alors que la fonction est nulle. C'est absurde, car la fonction $x \mapsto e^{-x^2/2}$ est strictement positive et les polynômes S et H sont non nuls.

On en déduit que $p \ge n$:

le polynôme H_n possède n racines réelles distinctes

au moins (et

au plus car il est de degré n).

Exercice 4 (Centrale Maths 2 PC 2024).

1. (a) Par récurrence sur $n \in \mathbb{N}^*$. Le cas n=1 est vérifié. Soit $n \in \mathbb{N}^*$. Supposons l'inégalité vérifiée au rang n pour tous réels x_1, \dots, x_n . Soit x_1, \dots, x_{n+1} , n+1 réels.

$$\left| \left(\prod_{k=1}^{n+1} (1+x_k) \right) - 1 \right| = \left| \left(\prod_{k=1}^{n} (1+x_k) \right) - 1 + x_{n+1} \prod_{k=1}^{n} (1+x_k) \right|$$

$$\leq \left| \left(\prod_{k=1}^{n} (1+x_k) \right) - 1 \right| + \left| x_{n+1} \prod_{k=1}^{n} (1+x_k) \right| \quad \text{(inégalité triangulaire)}$$

$$\leq \left| \left(\prod_{k=1}^{n} (1+x_k) \right) - 1 \right| + \left| x_{n+1} \right| \prod_{k=1}^{n} (1+|x_k|) \quad \text{(inégalité triangulaire)}$$

$$\leq \left(\prod_{k=1}^{n} (1+|x_k|) \right) - 1 + \left| x_{n+1} \right| \prod_{k=1}^{n} (1+|x_k|) \quad \text{(hypothèse de récurrence)}$$

$$\leq (1+|x_{n+1}|) \left(\prod_{k=1}^{n} (1+|x_k|) \right) - 1$$

$$\leq \left(\prod_{k=1}^{n+1} (1+|x_k|) \right) - 1$$

(b) Pour tout $x \in \mathbb{R}$, $1+x \le e^x$ par une étude de la fonction $x \mapsto e^x - x - 1$ (ou par convexité de exp). Par conséquent, comme $1+x_k \ge 0$ pour chaque $x_k \in [-1, +\infty[$, on peut multiplier les inégalités $(1+x_k) \le e^{x_k}$ de k=1 à n sans changer le sens de l'inégalité :

$$\prod_{k=1}^{n} (1+x_k) \le \prod_{k=1}^{n} e^{x_k} = \exp\left(\sum_{k=1}^{n} x_k\right)$$

2. Soient $x \in S$ et $n \in \mathbb{N}^*$:

$$Q_{n+1}(x) - Q_n(x) = \left(\prod_{k=1}^n (1 + |f_k(x)|)\right) (1 + |f_{n+1}(x)| - 1)$$

$$\leq \exp\left(\sum_{k=1}^n |f_k(x)|\right) |f_{n+1}(x)| \text{ d'après la question précédente}$$

$$\leq \exp(R_0(x)) |f_{n+1}(x)| \quad \operatorname{car} \sum_{k=1}^n |f_k(x)| \leq \sum_{k=1}^{+\infty} |f_k(x)| = R_0(x)$$

Chaque fonction $|f_n|$ est continue et la série de fonctions $\sum |f_n|$ converge uniformément sur S, on en déduit que la fonction R_0 est continue sur le segment S donc R_0 est bornée, donc en particulier majorée. Il existe donc $M \geq 0$ tel que pour tout $x \in S$, $R_0(x) \leq M$ d'où :

$$Q_{n+1}(x) - Q_n(x) \le e^{R_0(x)} |f_{n+1}(x)| \le e^M |f_{n+1}(x)|$$

3. Soient $x \in S$ et $n \in \mathbb{N}^*$:

$$|P_{n+1}(x) - P_n(x)| = |1 + f_{n+1}(x) - 1| \left| \prod_{k=1}^n (1 + f_k(x)) \right|$$

$$\leq |f_{n+1}(x)| \prod_{k=1}^n (1 + |f_k(x)|)$$

$$\leq (1 + |f_{n+1}(x)| - 1) Q_n(x)$$

$$\leq Q_{n+1}(x) - Q_n(x)$$

4. Commençons par la convergence simple. Soit $x \in S$. Pour tout $n \in \mathbb{N}^*$,

$$P_n(x) = \sum_{k=1}^{n-1} (P_{k+1}(x) - P_k(x)) + P_1(x)$$

Et la série $\sum_{k\geq 1} (P_{k+1}(x) - P_k(x))$ est absolument convergente (donc convergente) car $|P_{k+1}(x) - P_k(x)| \leq e^M |f_{k+1}(x)|$ et la série $\sum_{k\geq 1} |f_{k+1}(x)|$ est convergente car la série de fonctions $\sum_{k\geq 1} |f_k|$ converge uniformément (donc simplement) sur S. Par conséquent, la suite $(P_n(x))_{n\geq 1}$ est convergente et :

$$P(x) = \prod_{k=1}^{\infty} (1 + f_k(x)) = \lim_{n \to +\infty} P_n(x) = \sum_{k=1}^{\infty} (P_{k+1}(x) - P_k(x)) + P_1(x)$$

5. Pour tout $N \ge n \in \mathbb{N}^*$, pour tout $x \in S$, $\sum_{k=n}^{N} (P_{k+1}(x) - P_k(x)) = P_{N+1}(x) - P_n(x)$ (télescope) et, en passant à la limite $N \to \infty$ (qui existe d'après la question précédente), on obtient : $\sum_{k=n}^{+\infty} (P_{k+1}(x) - P_k(x)) = P_{N+1}(x) - P_N(x)$

 $P(x) - P_n(x)$. D'où, en utilisant l'inégalité triangulaire.

$$|P_n(x) - P(x)| \le \sum_{k=n}^{+\infty} |P_{k+1}(x) - P_k(x)| \le \sum_{k=n}^{+\infty} e^M |f_{k+1}(x)| = e^M R_n(x) \le e^M \sup_{S} |R_n|$$

qui est un majorant. D'où $\sup_S |P_n-P| \leq e^M \sup_S |R_n|$ car le \sup est le plus petit majorant. Or $\sup_S |R_n|$ tend vers 0 car la série de fonctions $\sum |f_n|$ converge uniformément. D'où

$$\lim_{n \to \infty} \sup_{S} |P_n - P| = 0$$

d'après le théorème des gendarmes. Donc la suite $(P_n)_{n\in\mathbb{N}^*}$ converge uniformément vers P sur S. Pour tout $n \in \mathbb{N}^*$, la fonction P_n est continue sur S par produit (fini) de fonctions continues et la suite de fonctions $(P_n)_{n\geq 1}$ converge uniformément sur S donc la fonction P est continue.

De plus, pour tout $x \in S$, le réel $P_n(x)$ est strictement positif car c'est un produit fini de facteurs strictement positifs. D'où $\ln(P_n(x)) = \sum_{k=1}^n \ln(1+f_k(x))$. Or la série $\sum_{k\geq 1} \ln(1+f_k(x))$ est absolument convergente. En effet, la série $\sum |f_k(x)|$ est convergente (par convergence simple de $\sum |f_k|$), d'où $\lim_{k\to\infty} f_k(x) = 0$, donc

 $|\ln(1+f_k(x))| \underset{k\to\infty}{\sim} |f_k(x)|$ qui ne change pas de signe. Par conséquent, $\lim_{n\to\infty} \ln(P_n(x)) = \sum_{k\to\infty} \ln(1+f_k(x))$ est un réel L et, par continuité de la fonction \exp :

$$\lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} e^{\ln(P_n(x))} = e^L > 0 \quad \text{donc} \quad P(x) > 0$$

- 6. Pour appliquer les deux questions précédentes, on pose $f_n(x) = -e^{-nx^2}$ pour tous $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$. Et on vérifie une à une toutes les hypothèses sur la suite (f_n) . Soit [a,b] un segment inclus dans \mathbb{R}_+^* :
 - pour tous $n \in \mathbb{N}^*$, et $x \in [a, b]$, $f_n(x) > -1$ car $e^{-nx^2} < 1$
 - la série de fonctions $\sum_{n\geq 1} |f_n|$ converge normalement (donc uniformément) sur [a,b] car $|f_n(x)|=$ $e^{-nx^2} \le e^{-na^2}$ et la série $\sum e^{-na^2}$ converge puisque c'est une série géométrique de raison $e^-a^2 \in$

Par conséquent, f est bien définie et continue sur [a,b] et ceci pour tout segment [a,b] inclus dans \mathbb{R}_+^* donc f est continue sur \mathbb{R}_+^* .

7. Soit x, y deux réels tels que $0 < x \le y$.

Alors pour tout $n \in \mathbb{N}^*$, $-nx^2 \ge -ny^2$ donc $1 - e^{-ny^2} \ge 1 - e^{-nx^2} \ge 0$, donc en multipliant ces inégalités:

$$\prod_{n=1}^{N} (1 - e^{-nx^2}) \ge \prod_{n=1}^{N} (1 - e^{-ny^2}) \quad \text{d'où} \quad f(x) \ge f(y)$$

car les inégalités larges passent à la limite $N \to \infty$. Donc f est croissante sur \mathbb{R}_+^* .

Limite en 0. On applique la question 1b:

$$\forall x > 0 \quad \forall N \in \mathbb{N}^*, \quad 0 \le \prod_{n=1}^N \left(1 - e^{-nx^2}\right) \le \exp\left(\sum_{n=1}^N - e^{-nx^2}\right)$$

Or pour tout x > 0, $\sum_{n=0}^{\infty} -e^{-nx^2} = \frac{-e^{-x^2}}{1-e^{-x^2}}$ (car c'est une série géométrique de raison $e^{-x^2} \in [0,1[)$. Les inégalités larges passent à la limite $N \to \infty$, d'où

$$\forall x > 0 \quad 0 \le f(x) \le \exp\left(\frac{-e^{-x^2}}{1 - e^{-x^2}}\right)$$

Or
$$\lim_{x\to 0^+}\frac{-e^{-x^2}}{1-e^{-x^2}}=-\infty$$
 d'où $\lim_{x\to 0^+}\exp\left(\frac{-e^{-x^2}}{1-e^{-x^2}}\right)=0$ donc, par le théorème des gendarmes :
$$\lim_{x\to 0^+}f(x)=0$$

Limite $en + \infty$. On applique les questions 1a puis 1b:

$$\forall x > 0, \ \forall n \in \mathbb{N}^*, \quad \left| \left(\prod_{k=1}^n (1 - e^{-kx^2}) \right) - 1 \right| \le \left(\prod_{k=1}^n 1 + \left| -e^{-kx^2} \right| \right) - 1 \le \exp\left(\sum_{k=1}^n e^{-kx^2} \right) - 1$$

Les inégalités larges passent à la limite $n\to\infty,$ d'où :

$$\forall x > 0, \quad |f(x) - 1| \le \exp\left(\frac{e^{-x^2}}{1 - e^{-x^2}}\right) - 1$$

$$\text{Or } \lim_{x \to +\infty} \frac{e^{-x^2}}{1-e^{-x^2}} = 0 \text{ donc } \lim_{x \to +\infty} \exp\left(\frac{e^{-x^2}}{1-e^{-x^2}}\right) = 1 \text{ d'où par le th\'eor\`eme des gendarmes}:$$

$$\lim_{x \to +\infty} |f(x) - 1| = 0 \quad \text{donc} \quad \lim_{x \to +\infty} f(x) = 1$$