D.S. Nº 4 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient quatre exercices.

On attachera un grand soin à la rédaction. En particulier, chaque résultat ou conclusion devra être encadré.

On peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

- **Exercice 1.** On lance indéfiniment une pièce qui tombe à chaque fois sur PILE avec la probabilité $\frac{2}{3}$ ou sur FACE avec la probabilité $\frac{1}{3}$. On note, pour chaque $k \in \mathbb{N}^*$, F_k l'événement « La pièce tombe sur FACE au k-ième lancer ».
 - 1. Le premier PILE. Soit, pour chaque $n \in \mathbb{N}^*$, l'événement E_n : « Le premier PILE apparaît au n-ième lancer ». Par exemple, si les premiers lancers donnent « FACE, FACE, PILE », alors l'événement E_3 est
 - (a) Calculer, pour chaque $n \in \mathbb{N}^*$, la probabilité $v_n = P(E_n)$.
- En = now Indupeducistor of
- (b) Quelle est la probabilité que la pièce tombe au moins une fois sur PILE?
 - 2. Le premier double PILE. Soit, pour chaque $n \in \mathbb{N}^*$, l'événement D_n : « Le premier double PILE apparaît au n—ième lancer ». Par exemple, si les premiers lancers donnent « PILE, FACE, FACE, PILE, FACE, PILE, PILE », alors l'événement D_7 est réalisé.
- (a) On note, pour chaque $n \in \mathbb{N}^*$, $u_n = P(D_n)$. (La probabilité u_1 vaut 0.) Calculer u_2 .
- $P(D_{n+2} \mid F_1)$ et $P(D_{n+2} \mid \overline{F_1} \cap F_2)$ en fonction de u_n et de u_{n+1} .
- $\forall n \in \mathbb{N}^*, \quad u_{n+2} = \frac{1}{3} \cdot u_{n+1} + \frac{2}{9} \cdot u_n. \quad 1$ (c) En déduire que :
- $\{u_n\}$ (d) Calculer u_n en fonction de $n \in \mathbb{N}^*$. $\{u_n\}_{n=1}^n$ $\{u_n\}_{n=1}^n$ $\{u_n\}_{n=1}^n$
 - 2 (e) En déduire la probabilité de l'événement « On n'obtient jamais de double PILE ». UN A policie de l'événement ».

Exercice 2. On souhaite déterminer les fonctions $f:]0, +\infty[\to \mathbb{R}$ vérifiant :

- (i) la fonction f est de classe C^1 (ii) pour tout $x \in]0, +\infty[, f(x+1) f(x) = \ln(x)$
- (iii) la fonction f' est croissante, (iv) la fonction f s'annule en 1, c'est-à-dire f(1) = 0.

Dans la suite, on note (C) l'ensemble de ces quatre conditions.

Partie I - Existence d'une solution au problème étudié

Dans cette partie, on construit une fonction vérifiant les conditions de (C).

Pour tout $n \in \mathbb{N}^*$, on définit la fonction $u_n :]0, +\infty[\to \mathbb{R} \text{ par } :$

$$\forall x \in]0, +\infty[, \quad u_n(x) = x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right)$$

 $\forall x \in]0,+\infty[, \quad u_n(x) = x \ln\left(1+\frac{1}{n}\right) - \ln\left(1+\frac{x}{n}\right)$ $\text{2.1. Montrer que la série de fonctions } \sum_{n\geqslant 1} u_n \text{ converge simplement sur }]0,+\infty[.$

Dans tout le reste de cet exercice, on note $\varphi:]0, +\infty[\to \mathbb{R}$ la fonction définie par :

$$\forall x \in]0, +\infty[, \quad \varphi(x) = -\ln(x) + \sum_{n=1}^{\infty} u_n(x)$$

4 1 2. Justifier que $(u_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions de classe C^1 sur $]0,+\infty[$, puis montrer qu'il existe une suite numérique $(\varepsilon_n)_{n\in\mathbb{N}^*}$ telle que la série $\sum_{n\geq 1}\varepsilon_n$ converge absolument et que :

$$\forall (n,x) \in \mathbb{N}^* \times]0, +\infty[, \quad u_n'(x) = \frac{x}{n(n+x)} + \varepsilon_n$$

1 3. En déduire que la série de fonctions $\sum_{n\geqslant 1}u'_n$ converge normalement sur tout segment [a,b] inclus dans $]0,+\infty[.$

 $\mbox{\Large 5}$ 4. Montrer que la fonction φ vérifie les conditions de (C).

Partie II - Unicité de la solution

Dans cette partie, on montre que φ est l'unique fonction vérifiant les conditions de (C). On considère une fonction $g:]0, +\infty[\to \mathbb{R}$ vérifiant les conditions de (C) et on pose $h = \varphi - g$.

o_j \leq 5. Montrer que, pour tout x > 0, h(x+1) = h(x) et h'(x+1) = h'(x).

 Λ_{1} 6. Soient $x \in]0,1]$ et $p \in \mathbb{N}^{*}$. Montrer que :

$$\varphi'(p) - g'(1+p) \leqslant h'(x+p) \leqslant \varphi'(1+p) - g'(p)$$
 et $\varphi'(p) - g'(1+p) = h'(p) - \frac{1}{p}$.

En déduire que :

$$|h'(x+p) - h'(p)| \leqslant \frac{1}{p}$$

- 7. Déduire des deux questions précédentes que la fonction h' est constante sur $]0, +\infty[$.
- 8. Conclure que $\varphi = g$.

Partie III - La formule de duplication

Dans cette partie, on considère la fonction $\psi:]0, +\infty[\to \mathbb{R}$ définie par :

$$\forall x \in]0, +\infty[, \quad \psi(x) = (x-1)\ln(2) + \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \frac{1}{2}\ln(\pi)$$

9. Montrer que, pour tout $N \in \mathbb{N}^*$:

$$\exp\left(\sum_{n=1}^{N} u_n \left(\frac{1}{2}\right)\right) = \frac{\sqrt{N+1}}{2N+1} \frac{\left(2^N N!\right)^2}{(2N)!}$$

- 10. Déduire de la question précédente et de la formule de Stirling que $\psi(1) = 0$.
- 11. Montrer que pour tout $x \in]0, +\infty[$, on a :

$$(x-1)\ln(2) + \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = \varphi(x) + \frac{1}{2}\ln(\pi)$$

Exercice 3. On considère la suite $(H_n)_{n\in\mathbb{N}}$ des polynômes de Hermite définie par les relations :

$$H_0=1$$
 et $\forall n\in\mathbb{N}, \quad H_{n+1}=XH_n-H_n'$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$:
- O_{I} (a) H_n est un polynôme unitaire (c'est-à-dire de coefficient dominant égal à 1) et de degré n;
- L (b) $H'_{n+1} = (n+1)H_n$.
- 2. Pour tous polynômes P et Q à coefficients réels, on pose :

$$\langle P \mid Q \rangle = \int_{-\infty}^{+\infty} P(x)Q(x)\mathrm{e}^{-x^2/2}\,dx.$$
 (a) Justifier, pour tous polynômes P et Q dans $\mathbb{R}[X]$, l'existence de l'intégrale qui définit $\langle P \mid Q \rangle$.

- (b) Démontrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$. Is $\mathbb{R}[X]$
- (c) Démontrer que, pour tout $P \in \mathbb{R}[X]$ et pour chaque $n \in \mathbb{N}$, $\langle P \mid H_{n+1} \rangle = \langle P' \mid H_n \rangle$. Sometime de la composition della composition della
- (d) En déduire que les polynômes de Hermite sont deux à deux orthogonaux.
- 3. Soient $n \in \mathbb{N}$ et l'application φ définie par $\varphi(P) = XP' P''$ pour chaque polynôme $P \in \mathbb{R}_n[X]$.
- (a) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- (b) Montrer que, pour tout $k \in [0, n]$, le polynôme H_k est un vecteur propre de φ .
- (c) L'endomorphisme φ est-il diagonalisable? Quel est son spectre?
- 4. Soit $n \in \mathbb{N}^*$. On note p le nombre de racines réelles (distinctes deux à deux) de multiplicité impaire du polynôme H_n et a_1, a_2, \ldots, a_p ces racines. Soit S le polynôme défini par :

$$S = 1$$
 si $p = 0$ et $S = \prod_{i=1}^{p} (X - a_i)$ sinon

- (a) Justifier que le polynôme H_n appartient à l'orthogonal de $\mathbb{R}_{n-1}[X]$ et en déduire que si p < n, alors $\langle S \mid H_n \rangle = 0$.
- \mathcal{L} (b) Démontrer que, pour tout $x \in \mathbb{R}$, $S(x)H_n(x) \geq 0$.
- f(x) (c) En déduire que f(x) a f(x) racines réelles, distinctes deux à deux.

Exercice 4. Soit $p \in \mathbb{N}$ et $(u_n)_{n \geqslant p}$ une suite de nombres réels. On pose, pour tout $n \in \mathbb{N}$ tel que $n \geqslant p$, $P_n=\prod u_k.$ On dit que la suite $(P_n)_{n\geqslant p}$ est la suite des produits partiels du produit infini $\prod u_n.$ Si la suite

 $(P_n)_{n\geqslant p}$ converge, alors on dit que sa limite est la valeur du produit infini et on pose : $\prod_{n=n}^{\infty}u_k=\lim_{n\to\infty}P_n$.

1. (a) Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$:

$$\left| \left(\prod_{k=1}^{n} (1+x_k) \right) - 1 \right| \leqslant \left(\prod_{k=1}^{n} (1+|x_k|) \right) - 1.$$

(On pourra procéder par récurrence.)

(b) Montrer que, pour tout
$$(x_1, \dots, x_n) \in [-1, +\infty[^n : \prod_{k=1}^n (1+x_k) \leqslant \exp\left(\sum_{k=1}^n x_k\right)]$$
.

Soient a et b deux réels tels que a < b et le segment S = [a, b]. Soit $(f_n)_{n\geqslant 1}$ une suite de fonctions continues sur S à valeurs dans $]-1,+\infty[$. On suppose que la série de fonctions $\sum_{n\geqslant 1}|f_n|$ converge uniformément sur \mathcal{S} . Soient, pour tous $n\in\mathbb{N}^*$ et $x\in\mathcal{S}$:

$$P_n(x) = \prod_{k=1}^n (1 + f_k(x)) \quad , \quad Q_n(x) = \prod_{k=1}^n (1 + |f_k(x)|) \quad \text{et} \quad R_n(x) = \sum_{k=n+1}^\infty |f_k(x)|.$$

- $\red{\flat}$ 2. Montrer qu'il existe $M \in \mathbb{R}_+^*$ tel que, pour tous $x \in \mathcal{S}$ et $n \in \mathbb{N}^*$: $Q_{n+1}(x) Q_n(x) \leqslant e^M |f_{n+1}(x)|$.
- 3. Montrer que, pour tous $x \in \mathcal{S}$ et $n \in \mathbb{N}^*$: $|P_{n+1}(x) P_n(x)| \leq Q_{n+1}(x) Q_n(x)$
- ✓ 4. En déduire que la suite de fonctions $(P_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathcal{S} vers la fonction

$$P: \mathcal{S} \to \mathbb{R} \quad x \mapsto \prod_{n=1}^{\infty} (1 + f_n(x))$$

 $\frac{2}{\sqrt{5}}$ 5. Montrer que cette convergence est uniforme et que la fonction P est continue et ne s'annule pas sur S.

Pour tout
$$x \in \mathbb{R}_+^*$$
, on pose $f(x) = \prod_{n=1}^{\infty} \left(1 - e^{-nx^2}\right)$.

on f est bien définie et qu'elle est continue sur \mathbb{R}_+^* .

- 2 6. Montrer que la fonction f est bien définie et qu'elle est continue sur \mathbb{R}_+^* .
- 7. Montrer que la fonction f est croissante sur \mathbb{R}_+^* puis étudier les limites de f en 0 et en $+\infty$.