CORRIGÉ DE LA FEUILLE DE T.D. Nº 10

Variables aléatoires

11 Janvier 2025

Exercice 1. 1. Une variable aléatoire X à valeurs dans $\mathbb N$ suit une loi de probabilité vérifiant la relation

$$\forall n \in \mathbb{N}, \ P(X=n+1) = \frac{4}{n+1}P(X=n).$$

Déterminer la loi de probabilité de X, c'est-à-dire calculer P(X=n) pour tout $n \in \mathbb{N}$.

2. Soient un réel $p \in]0,1[$ et une variable aléatoire X à valeurs dans \mathbb{N}^* telle que, pour tout $n \in \mathbb{N}^*$:

$$P(X = n) = p \cdot P(X \ge n).$$

Quelle est cette loi de probabilité?

1. Par récurrence, pour tout $n \in \mathbb{N}$,

$$P(X = n) = P(X = 0) \frac{4^n}{n!}$$

En utilisant le fait que $\sum_{n=0}^{+\infty} P(X=0) \frac{4^n}{n!} = 1$ on obtient

$$P(X = n) = e^{-4} \frac{4^n}{n!}$$

Donc X suit une loi de Poisson de paramètre 4.

2. Pour tout $n \in \mathbb{N}^*$,

$$P(X = n) - P(X = n + 1) = p \cdot P(X \ge n) - p \cdot P(X \ge n + 1) = p \cdot P(X = n)$$

car $(X \ge n) = (X = n) \cup (X \ge n + 1)$ et cette union est disjointe. On en déduit la relation

$$P(X = n + 1) = (1 - p)P(X = n)$$

qui permet de démontrer par récurrence que : $P(X = n) = (1 - p)^{n-1}P(X = 1)$.

Pour déterminer P(X=1), on remarque que $\bigcup_{n=1}^{\infty} (X=n)$ est une union certaine et disjointe, d'où :

$$1 = \sum_{n=1}^{\infty} (1-p)^{n-1} P(X=1) = \frac{1}{1 - (1-p)} P(X=1).$$

Donc

$$\forall n \in \mathbb{N}^*, \quad P(X=n) = (1-p)^{n-1}p.$$

La variable aléatoire X suit une loi géométrique de paramètre p.

<u>Autre méthode</u>: l'hypothèse $P(X=n)=p\cdot P(X\geq n)$ implique, pour n=1, que $P(X=1)=p\cdot P(X\geq 1)$. Or $(X\geq 1)$ est l'événement certain, d'où $P(X\geq 1)=1$, donc P(X=1)=p et on conclut comme ci-dessus.

Exercice 2 (Loi de Poisson). Soit X une variable aléatoire qui suit une loi de Poisson de paramètre λ .

- 1. Exprimer l'événement « X prend une valeur paire » comme une union disjointe. De même pour l'événement « X prend une valeur impaire ».
- 2. Calculer la probabilité que la valeur de X soit paire et calculer la probabilité que la valeur de X soit impaire. Comparer ces deux probabilités.

3. Soit n un entier naturel tel que $n+1 > \lambda$. Montrer que :

$$P(X \ge n) \le e^{-\lambda} \cdot \frac{\lambda^n}{n!} \cdot \frac{1}{1 - \frac{\lambda}{n+1}}.$$

- 4. En déduire que : $P(X \ge n) \underset{n \to \infty}{\sim} P(X = n)$.
- 5. Montrer que : $P(X > n) = \underset{n \to \infty}{\text{o}} (P(X = n))$.
- 1. L'événement « X prend une valeur paire » est $\bigcup_{k \in \mathbb{N}} (X = 2k)$ tandis que l'événement « X prend une valeur impaire » est $\bigcup_{k \in \mathbb{N}} (X = 2k + 1)$ et ces unions sont disjointes.
- 2. La variable aléatoire X suit une loi de Poisson de paramètre λ , d'où $X(\Omega) = \mathbb{N}$ et $\forall n \in \mathbb{N}$, $P(X = n) = e^{-\lambda} \cdot \frac{\lambda^n}{n!}$. La probabilité que la valeur de X soit :

— paire est
$$\sum_{k=0}^{\infty} P(X=2k) = e^{-\lambda} \cdot \operatorname{ch}(\lambda)$$
;

— impaire est
$$\sum_{k=0}^{\infty} P(X = 2k + 1) = e^{-\lambda} \cdot \operatorname{sh}(\lambda)$$

d'après la question précédente. La valeur de X a plus de chances d'être paire qu'impaire car

$$\forall \lambda \in \mathbb{R}, \ \mathrm{ch} \lambda = \frac{\mathrm{e}^{+\lambda} + \mathrm{e}^{-\lambda}}{2} > \mathrm{sh} \lambda = \frac{\mathrm{e}^{+\lambda} - \mathrm{e}^{-\lambda}}{2}.$$

3. Soit n un entier naturel tel que $n+1>\lambda$. L'événement $(X\geq k)$ est égal à $\bigcup_{k\geq n}(X=k)$ et cette union est disjointe, d'où :

$$P(X \ge n) = \sum_{k=0}^{\infty} P(X = n + k) = e^{-\lambda} \cdot \frac{\lambda^n}{n!} \cdot \sum_{k=0}^{\infty} \frac{\lambda^k n!}{(n+k)!}.$$

Or, pour tout $k \in \mathbb{N}$, $0 \le \frac{\lambda^k n!}{(n+k)!} \le \left(\frac{\lambda}{n+1}\right)^k$ et la série géométrique $\sum \left(\frac{\lambda}{n+1}\right)^k$ converge car $n+1 > \lambda$. Sa somme est $\frac{1}{1-\frac{\lambda}{n+1}}$. Donc $P(X \ge n) \le \mathrm{e}^{-\lambda} \cdot \frac{\lambda^n}{n!} \cdot \frac{1}{1-\frac{\lambda}{n+1}}$.

- 4. Pour chaque $n \in \mathbb{N}$, $(X = n) \subset (X \ge n)$, d'où $P(X = n) \le P(X \ge n)$ par croissance de la probabilité. Par suite, $P(X = n) \le P(X \le n) \le P(X = n) \cdot \frac{1}{1 \frac{\lambda}{n+1}}$ d'après la question précédente. On divise par P(X = n) qui n'est pas nul et, d'après le théorème des gendarmes, $\frac{P(X \ge n)}{P(X = n)} \xrightarrow[n \to \infty]{} 1$. Donc $P(X \ge n) \xrightarrow[n \to \infty]{} P(X = n)$.
- 5. $(X \ge n) = (X > n) \cup (X = n)$ et cette union est disjointe, d'où

$$P(X \ge n) = P(X > n) + P(X = n),$$

donc $P(X > n) = P(X \ge n) - P(X = n)$.

Or $P(X \ge n) \sim P(X = n)$, d'où $P(X \ge n) = P(X = n) \cdot (1 + \varepsilon_n)$.

D'où $P(X > n) = P(X = n) \cdot (1 + \varepsilon_n) - P(X = n) = P(X = n) \cdot \varepsilon_n$.

Donc $P(X > n) = \underset{n \to \infty}{\circ} (P(X = n))$.

Exercice 3 (tiré de Mines Ponts Maths 2 PC 2017).

Une urne contient n boules numérotées de 1 à n. On effectue n+1 tirages avec remise. On note X la variable aléatoire égale au nombre de tirages nécessaires pour amener, pour la première fois, une boule déjà tirée. Par exemple, avec n=5, si les 6 tirages donnent successivement 3-2-1-5-2-3, alors X=5. Pour modéliser cette expérience aléatoire, on introduit l'univers $\Omega=[\![1,n]\!]^{n+1}$.

1. Soit $k \in [2, n+1]$: montrer que l'événement (X = k) n'est pas vide et que sa probabilité P(X = k) n'est pas nulle.

2. Montrer que, pour tout $k \in [1, n-1]$, $P(X > k) \neq 0$ et :

$$P(X > k + 1) = P(X > k + 1 | X > k) \cdot P(X > k).$$

- 3. Pour chaque $k \in [1, n-1]$, déterminer P(X > k+1|X > k).
- 4. En déduire P(X > k) pour tout $k \in [1, n]$.
- 1. Il y a équiprobabilité, d'où $P(X=k) = \frac{\operatorname{Card}(X=k)}{\operatorname{Card}(\Omega)}$. Or l'événement (X=k) n'est pas vide car le résultat $(1,2,\cdots,k-1,1,\cdots,1)$ appartient à cet événement, d'où $\operatorname{Card}(X=k) \neq 0$, donc $P(X=k) \neq 0$.
- 2. L'événement (X = n + 1) est inclus dans (X > k), d'où (par croissance de la proba) $P(X > k) \ge P(X = n + 1)$ qui est strictement positif d'après la première question. Les événements (X > k + 1) et $(X > k) \cap (X > k + 1)$ sont égaux, d'où $P(X > k + 1) = P[(X > k) \cap (X > k + 1)] = P(X > k) \cdot P(X > k + 1 | X > k)$ d'après la formule des probabilités composées.
- 3. Calculons $P_{(X>k)}(X>k+1)$. On sait que (X>k), donc on a tiré k boules distinctes deux à deux lors des k premiers tirages. L'événement (X>k+1) est réalisé si, et seulement si, on tire une (k+1)-ième boule différente des k premières. Par équiprobabilité, $P_{(X>k)}(X>k+1)=\frac{n-k}{n}$.
- 4. $P(X > k) = P(X > 1) \times \prod_{i=1}^{k-1} \frac{n-i}{n}$. Or $(X > 1) = \Omega$, d'où P(X > 1) = 1. Et $\prod_{i=1}^{k-1} \frac{n-i}{n} = \frac{1}{n^{k-1}} \prod_{i=n-1}^{n-k+1} i = \frac{1}{n^{k-1}} \frac{(n-1)!}{(n-k)!}$. Donc $P(X > k) = \frac{n!}{n^k (n-k)!}$.

Exercice 4 (Loi binomiale, espérance & variance). Un marcheur se déplace sur une droite en faisant un pas vers la droite avec une probabilité $p \in]0,1[$ ou vers la gauche avec la probabilité q=1-p. Pour chaque $n \in \mathbb{N}^*$, on note X_n sa position après n pas et D_n le nombre de pas vers la droite parmi ces n pas.

Calculer la loi de probabilité, l'espérance et la variable aléatoire D_n . En déduire l'espérance et la variable aléatoire X_n .

Les n pas sont des épreuves de Bernoulli, qu'on suppose indépendantes. La variable aléatoire D_n suit la loi binomiale $\mathcal{B}(n,p)$, d'où

$$\begin{cases} D_n(\Omega) = \llbracket 0, n \rrbracket \\ \forall k \in \llbracket 0, n \rrbracket, \ P(D_n = k) = \binom{n}{k} p^k q^{n-k} \\ E(D_n) = np \\ V(D_n) = npq \end{cases}.$$

Or $X_n = D_n - (n - D_n) = 2D_n - n$ est la position après D_n pas vers la droite et $n - D_n$ pas vers la gauche. D'où

$$\begin{cases} X_n(\Omega) \subset [-n, +n] \\ \forall k \in [-n, +n], \ P(X_n = k) = P\left(D_n = \frac{n+k}{2}\right) \\ E(X_n) = E(2D_n - n) = 2E(D_n) - n = 2np - n \\ V(X_n) = V(2D_n - n) = 4V(D_n) = 4npq \end{cases}.$$

Exercice 5 (Le problème du collectionneur, loi géométrique & espérance). Chaque paquet de lessive de la marque Bonux contient un cadeau, choisi au hasard parmi n cadeaux équiprobables. On note S_k le nombre de paquets achetés jusqu'à obtenir k cadeaux différents. (Par suite $S_1 = 1$ et, pour chaque $k \geq 2$, S_k est une variable aléatoire.)

- 1. Pour chaque $k \in [2, n]$, soit $X_k = S_k S_{k-1}$. Déterminer la loi de probabilité de X_k .
- 2. En déduire l'espérance $E(S_n)$ et montrer que $E(S_n) \underset{n \to \infty}{\sim} n \cdot \ln(n)$.

FIGURE 1 - BONUX

- 1. Pour chaque $k \in [\![2,n]\!]$, la variable aléatoire $X_k = S_k S_{k-1}$ est le temps d'attente d'un succès. On appelle succès : obtenir un cadeau différent des k-1 cadeaux déjà obtenus. La probabilité d'un succès est donc $p_k = \frac{n-(k-1)}{n}$ et la variable aléatoire X_k suit une loi géométrique de paramètre p_k car les achats forment une suite d'épreuves de Bernoulli indépendantes.
- 2. $S_n = (S_n S_{n-1}) + (S_{n-1} S_{n-2}) + \dots + (S_2 S_1) + S_1 = 1 + \sum_{k=2}^n X_k$. D'où (par linéarité de l'espérance) : $E(S_n) = 1 + \sum_{k=2}^n E(X_k)$. Or $E(X_k) = \frac{1}{p_k} = \frac{n}{n (k-1)}$. D'où $E(S_n) = 1 + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{2} + \frac{n}{1} = n \cdot H_n$, où $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \sim \ln n$ (ne pas oublier de le démontrer en comparant série et intégrale). Donc $E(S_n) \underset{n \to \infty}{\sim} n \cdot \ln(n)$.

Exercice 6 (Série génératrice & espérance). Au concours de saut en hauteur, Zébulon tente de franchir une à une les hauteurs 1, 2, 3, \cdots , n, \cdots Au premier échec, Zébulon est éliminé. La probabilité de franchir chaque hauteur n est $\frac{1}{n}$. On suppose les sauts indépendants et on note X le numéro du dernier saut réussi par Zébulon.

Figure 2 – Zébulon

- 1. Proposer un univers Ω et déterminer l'ensemble $X(\Omega)$ des valeurs prises par la variable aléatoire X.
- 2. Déterminer la loi de X, vérifier par le calcul que $\sum_{k \in X(\Omega)} P(X=k) = 1$. Qu'en déduire ?
- 3. Ecrire la série génératrice de la variable aléatoire X, montrer que son rayon de convergence est infini et que :

$$\forall t \in \mathbb{R}^*, \quad G_X(t) = \frac{te^t - e^t + 1}{t}.$$

4. En déduire que la variable X est d'espérance finie et calculer E(X), c'est-à-dire la hauteur que peut espérer franchir Zébulon.

- 1. L'univers Ω ne sert pas à grand chose ici mais puisqu'on le demande : appelons résultat une suite de E (pour échec) et de S (pour succès), en faisant comme si Zébulon continuait de sauter même après avoir échoué : alors $\Omega = \{S; E\}^{\mathbb{N}^*}$. L'ensemble des valeurs possibles de la variable aléatoire X est $X(\Omega) = \mathbb{N}^*$. On a supposé que Zébulon n'est pas Superman et finira donc par échouer, mais les amateurs de super-héros poseront $X(\Omega) = \mathbb{N}^* \cup \{\infty\}$.
- 2. L'événement (X = k) est « le sportif réussit les k premiers sauts et rate le (k + 1)-ième saut. » En supposant les sauts indépendants, on obtient :

$$P(X = k) = 1 \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{k} \cdot \left(1 - \frac{1}{k+1}\right) = \frac{k}{(k+1)!}$$

On peut aussi écrire $P(X=k)=\frac{(k+1)-1}{(k+1)!}=\frac{1}{k!}-\frac{1}{(k+1)!}$, pour faire apparaître un télescope. Pour tout $N\in\mathbb{N}^*$,

$$\sum_{k=1}^N P(X=k) = 1 - \frac{1}{(N+1)!} \underset{N \to \infty}{\longrightarrow} 1, \quad \text{donc} \quad \sum_{k=1}^\infty P(X=k) = 1.$$

On en déduit que l'événement « Zébulon passe toutes les hauteurs » est presque impossible.

3. La série génératrice de la variable aléatoire X est la série entière

$$\sum P(X=k) \cdot t^k = \sum \frac{k}{(k+1)!} t^k.$$

Son rayon de convergence est $+\infty$ car (règle de D'Alembert) : $\frac{\left|\frac{k+1}{(k+2)!}t^{k+1}\right|}{\left|\frac{k}{(k+1)!}t^k\right|}\frac{k+1}{k(k+2)}|t| \underset{k \to \infty}{\longrightarrow} 0. \text{ Pour tout } t \in \mathbb{R},$

$$G_X(t) = \sum_{k=1}^{\infty} P(X=k) \cdot t^k = \sum_{k=1}^{\infty} \frac{k}{(k+1)!} t^k = t \cdot \sum_{k=1}^{\infty} \frac{d}{dt} \frac{t^k}{(k+1)!}.$$

On peut dériver terme à terme une série entière sans changer son rayon de convergence, d'où :

$$\forall t \in \mathbb{R}, \ G_X(t) = t \cdot \frac{d}{dt} \sum_{k=1}^{\infty} \frac{t^k}{(k+1)!}$$

Or, pour tout $t \in \mathbb{R}^*$, $\sum_{k=1}^{\infty} \frac{t^k}{(k+1)!} = \frac{e^t - 1 - t}{t}$. Donc, pour tout $t \in \mathbb{R}^*$,

$$G_X(t) = \frac{te^t - e^t + 1}{t}.$$

4. La fonction G_X est dérivable en 1, donc la variable aléatoire X est d'espérance finie et $E(X) = G'_X(1)$. Or, pour tout $t \in \mathbb{R}^*$, $G'_X(t) = \frac{d}{dt} \frac{t e^t - e^t + 1}{t} = \frac{t^2 e^t - t e^t + e^t - 1}{t^2}$. Donc E(X) = e - 1.

Exercice 7 (Loi binomiale, inégalité de Markov & inégalité de concentration).

Soient $n \in \mathbb{N}^*$, deux réels p et q dans]0,1[tels que $q \geq p$ et S_n une variable aléatoire réelle qui suit la loi $\mathcal{B}(n,p)$.

- 1. Soit un réel $u \ge 0$. Rappeler l'espérance $E(S_n)$. Montrer que la variable aléatoire e^{uS_n} est d'espérance finie et que $E(e^{uS_n}) = (1 p + pe^u)^n$.
- 2. Montrer que

$$P\left(S_n \ge \frac{p+q}{2}n\right) \le \frac{(1-p+pe^u)^n}{e^{\frac{p+q}{2}nu}}.$$

- 3. On note $g: \mathbb{R}_+ \to \mathbb{R}$, $u \mapsto \ln(1 p + pe^u)$.
 - (a) Exprimer g''(u) sous la forme $\frac{\alpha(u)\beta(u)}{(\alpha(u)+\beta(u))^2}$.
 - (b) Montrer que $g''(u) \leq \frac{1}{4}$ pour tout $u \in \mathbb{R}_+$.
 - (c) Montrer que:

$$\forall u \ge 0$$
, $\ln(1 - p + pe^u) \le pu + \frac{u^2}{8}$.

4. Prouver l'inégalité de concentration suivante :

$$P\left(S_n \ge \frac{p+q}{2}n\right) \le e^{-n\frac{(p-q)^2}{2}}.$$

1. $S_n(\Omega) = \llbracket 0, n \rrbracket$ et, pour chaque $k \in \llbracket 0, n \rrbracket$, $P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

La variable aléatoire S_n possède un espérance, égale à $E(S_n) = \sum_{k=0}^n P(S_n = k) \cdot k = np$.

D'après le théorème de transfert, la variable aléatoire e^{uS_n} possède aussi une espérance car l'ensemble $S_n(\Omega)$ est fini et cette espérance est égale à

$$E(e^{uS_n}) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} e^{ku} = \sum_{k=0}^n \binom{n}{k} (pe^u)^k (1-p)^{n-k} = (1-p+pe^u)^n.$$

2. Pour rappel (de l'inégalité de Markov) : si X une variable aléatoire, à valeurs positives, possédant une espérance E(X), alors, pour tout a>0, $P(X\geq a)\leq \frac{E(X)}{a}$.

Si u=0, l'inégalité est banale. Supposons u>0. On choisit $a=\mathrm{e}^{\frac{p+q}{2}nu}>0$ et on applique l'inégalité de Markov à la variable aléatoire $X=\mathrm{e}^{uS_n}$, qui est bien à valeurs positives. Les deux événements $(X\geq a)$ et $\left(S_n\geq \frac{p+q}{2}n\right)$ sont égaux (car la fonction $t\mapsto \exp(ut)$ est strictement croissante), d'où :

$$P\left(S_n \ge \frac{p+q}{2}n\right) \le \frac{(1-p+pe^u)^n}{\frac{p+q}{2}nu}.$$

- 3. (a) La fonction g est deux fois dérivable. Pour tout $u \ge 0$, $g'(u) = \frac{pe^u}{1 p + pe^u}$ et $g''(u) = \frac{qpe^u}{(q + pe^u)^2} = \frac{\alpha(u)\beta(u)}{(\alpha(u) + \beta(u))^2}$, en notant $\alpha(u) = q$ et $\beta(u) = pe^u$.
 - (b) Or $\left[\alpha(u) + \beta(u)\right]^2 \ge 4\alpha(u)\beta(u)$ car $\left[\alpha(u) + \beta(u)\right]^2 4\alpha(u)\beta(u) = \left[\alpha(u) \beta(u)\right]^2 \ge 0$, donc $g''(u) \le \frac{1}{4}$.
 - (c) La fonction g'' est continue, d'où : $g'(u) g'(0) = \int_0^u g''(t) \, dt \le \int_0^u \frac{1}{4} \, dt = \frac{u}{4}$ par croissance de l'intégrale. Or g'(0) = p, d'où $g'(u) \le p + \frac{u}{4}$. La fonction g' est continue, d'où $g(u) g(0) = \int_0^u g'(t) \, dt \le \int_0^u (p + \frac{t}{4}) \, dt = pu + \frac{u^2}{8}$ par croissance de l'intégrale. Or g(0) = 0, donc : $g(u) \le pu + \frac{u^2}{8}$.
- 4. On a montré que, pour tout u > 0,

$$P\left(S_n \ge \frac{p+q}{2}n\right) \le \frac{(1-p+pe^u)^n}{e^{\frac{p+q}{2}}nu}. \quad (*)$$

Or
$$\frac{(1-p+pe^u)^n}{e^{\frac{p+q}{2}nu}} = e^{ng(u)-\frac{p+q}{2}nu} \le e^{n\left[pu+\frac{u^2}{8}-\frac{p+q}{2}u\right]}$$
.

Alors $\left[pu + \frac{u^2}{8} - \frac{p+q}{2}u\right] = -\frac{1}{8} \cdot u \cdot (4(q-p) - u) = -\frac{(p-q)^2}{2}$ si u = 2(q-p). L'inégalité (*) étant vraie pour tout $u \ge 0$, elle l'est en particulier si u = 2(q-p) qui est bien positif car on suppose que $q \ge p$. Donc

$$P\left(S_n \ge \frac{p+q}{2}n\right) \le e^{-n\frac{(p-q)^2}{2}}.$$

Exercice 8 (Fonction de répartition & continuité décroissante). Soient (Ω, \mathcal{A}, P) un espace probabilisé et X une variable aléatoire discrète à valeurs dans \mathbb{R} . La **fonction de répartition** de X est la fonction définie par

$$F_X : \mathbb{R} \to [0,1], \ a \mapsto F_X(a) = P(X \le a).$$

- 1. Montrer que la fonction F_X est croissante.
- 2. En utilisant la fonction F_X , calculer $P(a < X \le b)$ pour tout $a \le b$.
- 3. Soit (a_n) une suite de réels tendant vers $-\infty$ en décroissant. En utilisant la suite des événements $A_n = (X \le a_n)$, montrer que $\lim_{x \to -\infty} F_X(x) = 0$.
- 4. Etudier $\lim_{x \to +\infty} F_X(x)$

- 5. Soit un réel a. Soit a_n une suite de réels tendant vers a en décroissant. En utilisant la suite des événements $B_n = (X \le a_n)$, montrer que F est continue à droite en a.
- 6. En utilisant la suite des événements $C_n = \left(a \frac{1}{n} < X \le a\right)$, montrer que $F(a) = \lim_{x \to a^-} F(x) + P(X = a)$. À quelle condition la fonction de répartition est-elle continue en a?
- 1. Soient deux réels a et b. Si $a \le b$, alors $(X \le a) \subset (X \le b)$, d'où (par croissance de la probabilité) : $P(X \le a) \le P(X \le b)$.
- 2. Soient deux réels a et $b:]-\infty, b] =]-\infty, a] \cup]a, b]$, d'où $X^{-1}\left(]-\infty, b]\right) = X^{-1}\left(]-\infty, a]\right) \cup X^{-1}\left(]a, b]\right)$, d'où $(X \le b) = (X \le a) \cup (a < X \le b)$ et cette union est disjointe, d'où $P(X \le b) = P(X \le a) + P(a < X \le b)$.
- 3. D'après le théorème de la limite monotone, la fonction F_X possède une limite ℓ_1 en $-\infty$, finie ou infinie. Soit (a_n) une suite de réels qui tend vers $-\infty$ en décroissant. Pour chaque $n \in \mathbb{N}$, l'événement $A_{n+1} = (X \le a_{n+1})$ est inclus dans l'

 $A_n = (X \le a_n)$, d'où (par le théorème de continuité décroissante) : $P\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} P(A_n)$. Or $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$. D'où $\lim_{n \to \infty} F_X(a_n) = 0$, donc $\ell_1 = 0$.

4. D'après le théorème de la limite monotone, la fonction F_X possède une limite ℓ_2 en $+\infty$, finie ou infinie. Soit (a_n) une suite de réels qui tend vers $+\infty$ en croissant. Pour chaque $n \in \mathbb{N}$, l'événement $A_n = (X \le a_n)$ est inclus dans l'événement

 $A_{n+1}=(X\leq a_{n+1})$, d'où (par le théorème de continuité croissante) : $P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}P(A_n)$. Or $\bigcup_{n\in\mathbb{N}}A_n=\Omega$. D'où $\lim_{n\to\infty}F_X(a_n)=1$, donc $\ell_2=1$.

5. Soient un réel a et une suite (a_n) qui tend vers a en décroissant. Pour chaque $n \in \mathbb{N}$, l'événement $B_{n+1} = (X \le a_{n+1})$ est inclus dans l'événement $B_n = (X \le a_n)$, d'où (continuité décroissante) : $P\left(\bigcap_{n \in \mathbb{N}} B_n\right) = \lim_{n \to \infty} P(B_n)$.

Or $\bigcap_{n\in\mathbb{N}} B_n$ est l'événement $(X\leq a)$. Donc $\lim_{n\to\infty} F_X(a_n)=F_X(a)$. Or la fonction F est croissante, elle admet donc une limite en a^+ . Comme $a_n\to a^+$, on en déduit $\lim_{x\to a^+} F_X(x)=F_X(a)$. Donc la fonction F_X est continue à droite en a.

6. Pour tout $n \in \mathbb{N}^*$, la probabilité de l'événement $C_n = \left(a - \frac{1}{n} < X \le a\right)$ est $(*): P(C_n) = F_X(a) - F_X\left(a - \frac{1}{n}\right)$ d'après le 1.

D'après le théorème de continuité décroissante, $\lim_{n\to\infty} P(C_n) = P(X=a)$ car $\bigcap_{n\in\mathbb{N}^*} C_n$ est l'événement (X=a) et

 $\forall n \in \mathbb{N}^*, \ C_{n+1} \subset C_n$. De plus, la fonction F_X est croissante, d'où (théorème de la limite monotone), la fonction F_X admet une limite en a^- , d'où $F_X\left(a-\frac{1}{n}\right) \longrightarrow \lim_{x\to a^-} F_X(x)$. D'où l'égalité (*) passe à la limite : $F_X(a) = \lim_{x\to a^-} F_X(x) + P(X=a)$. La fonction F_X est donc continue à gauche en $F_X(a) = \lim_{x\to a^-} F_X(x) + P(X=a)$.

D'où l'égalité (*) passe à la limite : $F_X(a) = \lim_{x \to a^-} F_X(x) + P(X=a)$. La fonction F_X est donc continue à gauche en a ssi P(X=a) = 0. Elle est par ailleurs toujours continue à droite en a d'après la question précédente. Donc la fonction de répartition est continue en a ssi P(X=a) = 0.