D.S. N° 5 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient quatre exercices.

On attachera un grand soin à la rédaction. En particulier, chaque résultat ou conclusion devra être encadré.

On peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

Exercice 1. On fait l'expérience aléatoire suivante : on lance une pièce indéfiniment, qui tombe sur *Pile* avec une probabilité $p \in]0,1[$ et sur *Face* avec la probabilité q=1-p.

Soit un entier naturel $r \ge 1$. On note T le temps d'attente du premier Pile et X le temps d'attente du r-ième Pile. Par exemple : $T(FFPFP\cdots) = 3$ et, si r = 2, alors $X(FFPFP\cdots) = 5$.

- 1. Quel est l'ensemble $T(\Omega)$ des valeurs prises par la variable aléatoire T? Quelle est, pour chaque $n \in T(\Omega)$, la probabilité P(T = n)? Que valent l'espérance E(T) et la variance V(T)?
- 2. Soit $n \ge r \ge 1$. Soient A l'événement « La pièce est tombée r-1 fois sur Pile au cours des n-1 premiers lancers ». Calculer la probabilité P(A).
- 3. En déduire, pour chaque $n \in \mathbb{N}^*$, la probabilité P(X = n).
- 4. Déterminer le rayon de convergence R de la série entière $\sum {n-1 \choose r-1} x^{n-r}$ et calculer, pour $x \in]-R, +R[$, la somme $\sum_{n=r}^{\infty} {n-1 \choose r-1} x^{n-r}$.
- 5. Montrer, par le calcul, que la somme $\sum_{n=r}^{\infty} P(X=n)$ vaut bien 1. Qu'en déduire?
- 6. Montrer que, pour tout $x \in]-\frac{1}{q}, \frac{1}{q}[, \sum_{n=r}^{\infty} P(X=n)x^n = \left(\frac{px}{1-qx}\right)^r.$
- 7. Montrer que la variable aléatoire X est d'espérance finie et calculer cette espérance E(X).
- 8. Montrer que la variable aléatoire X^2 est d'espérance finie et que $V(X) = \frac{rq}{p^2}$.

Exercice 2. 1. Montrer que, pour tous $n \in \mathbb{N}^*$ et $x \in \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$,

$$\tan^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} \tan^{(k)}(x) \tan^{(n-k)}(x).$$

2. Montrer que, pour tous $n \in \mathbb{N}$ et $x \in \left[0, +\frac{\pi}{2}\right[$

$$\tan^{(n)}(x) \ge 0.$$

- 3. Rappeler la formule de Taylor avec reste intégral et ses hypothèses pour une fonction f sur un segment [a,b].
- 4. Soit, pour chaque $k \in \mathbb{N}$, $a_k = \frac{\tan^{(k)}(0)}{k!}$. Montrer que la série $\sum a_k x^k$ converge pour tout $x \in \left[0, +\frac{\pi}{2}\right]$.
- 5. Montrer que la fonction $S: x \mapsto \sum_{n=0}^{\infty} a_n x^n$ est définie au moins sur $\left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$.
- 6. Calculer a_0 et a_1 . Montrer que, pour tout $n \in \mathbb{N}^*$,

$$(n+1)a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k}.$$

7. Montrer que, pour tout $x \in \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$,

$$S'(x) = 1 + S^2(x).$$

8. Montrer que la fonction tan est développable en série entière sur $\left]-\frac{\pi}{2},+\frac{\pi}{2}\right[$.

Exercice 3 (tiré de Mines-Ponts - 2017 - MP - Math 1).

Soit I le segment [-1,+1]. Soient E le \mathbb{R} -espace vectoriel $\mathcal{C}(I,\mathbb{R})$ des fonctions continues de I vers \mathbb{R} et E_1 le sous-espace vectoriel $\mathcal{C}^1(I,\mathbb{R})$ formé des fonctions de E qui sont de classe \mathcal{C}^1 .

- 1. Pour tout $n \in \mathbb{N}$, on note W_n l'intégrale de Wallis $\int_0^{\pi/2} (\sin(t))^n dt$.
 - (a) Montrer que la suite numérique $(W_n)_{n\in\mathbb{N}}$ est décroissante et strictement positive.
 - (b) Établir pour tout $n \in \mathbb{N}$ une relation entre W_{n+2} et W_n . En déduire que, pour tout $n \in \mathbb{N}$:

$$W_n W_{n+1} = \frac{\pi}{2(n+1)}.$$

- (c) Montrer que $W_n \sim \sqrt{\frac{\pi}{2n}}$.
- 2. Si $f \in E$, on définit la fonction u(f) par :

$$\forall x \in I, \ u(f)(x) = \frac{2}{\pi} \int_0^{\pi/2} f(x \sin(t)) \ dt.$$

On admettra que la fonction u(f) est continue sur I et que u est donc un endomorphisme de E.

(a) Soit $n \in \mathbb{N}$. Montrer que la fonction $f_n: I \to \mathbb{R}, x \mapsto x^n$ est un vecteur propre de u. (Par convention, $f_0(x) = 1$ pour tout $x \in I$.)

(b) Si $f \in E_1$, on définit la fonction v(f) par :

$$\forall x \in I, \ v(f)(x) = f(0) + x \int_0^{\pi/2} f'(x\sin(t)) \ dt.$$

Montrer que v est une application linéaire de E_1 vers E. Et calculer $v(f_n)$ pour tout $n \in \mathbb{N}$.

3. On munit l'espace vectoriel E de la norme $\|\cdot\|$ définie pour tout $f\in E$ par :

$$||f|| = \max_{x \in I} |f(x)|.$$

- (a) Montrer que l'endomorphisme u est une application continue de $(E, \|\cdot\|)$ vers $(E, \|\cdot\|)$.
- (b) Montrer que l'application v n'est pas continue de $(E_1, \|\cdot\|)$ vers $(E, \|\cdot\|)$.
- 4. Soit D l'ensemble des fonctions de E qui sont développables en série entière. Soit $(a_n)_{n\in\mathbb{N}}$ la suite des coefficients du développement en série entière d'une fonction $f\in D$. Montrer que D est stable par u. Quels sont les coefficients du développement en série entière de u(f)?

Exercice 4. On veut prouver que, pour toute matrice $A \in \mathscr{M}_{pp}(\mathbb{C})$ et, pour toute norme $\|\cdot\|$ sur $\mathscr{M}_{pp}(\mathbb{C})$:

$$||A^k||^{1/k} \underset{k \to \infty}{\longrightarrow} \max\{|\lambda|, \ \lambda \in \operatorname{Sp}(A)\}$$
 (\heartsuit)

On note:

- p un entier naturel non nul;
- \mathscr{M}_p l'espace vectoriel $\mathscr{M}_{pp}(\mathbb{C})$ des matrices carrées d'ordre p à coefficients complexes;
- pour toute matrice $A \in \mathcal{M}_p$, le réel

$$r(A) = \max\{|\lambda|, \ \lambda \in \operatorname{Sp}(A)\}\$$

appelé le rayon spectral de la matrice A.

- 1. Soit x un réel strictement positif. Étudier $\lim_{k\to\infty} x^{1/k}$.
- 2. Soit $A \in \mathcal{M}_p$.
 - (a) Justifier l'existence de r(A).
 - (b) Montrer que r(A) = 0 si, et seulement si, la matrice A est nilpotente.
- 3. Soit $\|\cdot\|$ une norme sous-multiplicative sur \mathcal{M}_p , autrement dit elle vérifie :

$$\forall (A, B) \in \mathscr{M}_p^2, \qquad ||AB|| \le ||A|| \cdot ||B||$$

(a) Soient $A \in \mathcal{M}_p$ et $\lambda \in \operatorname{Sp}(A)$. Montrer qu'il existe une matrice non nulle $B \in \mathcal{M}_p$ telle que $AB = \lambda B$. En déduire que :

$$r(A) \le ||A||$$

- (b) Soit $A \in \mathcal{M}_p$ telle que ||A|| < 1. Montrer successivement que :
 - i. la matrice $I_p A$ est inversible.
 - ii. la suite (A^k) converge vers la matrice nulle.
 - iii. la suite (C_k) , définie par $C_k = I_p + A + \cdots + A^k$, converge et calculer sa limite. (On pourra calculer le produit $(I_p A)C_k$.)
- (c) Soient A et B deux matrices semblables de \mathcal{M}_p .

i. Montrer qu'il existe un réel $\gamma>0$ tel que :

$$\forall k \in \mathbb{N}^*, \qquad \frac{1}{\gamma} \|A^k\| \leq \|B^k\| \leq \gamma \|A^k\|$$

- ii. En déduire que, si la propriété (\heartsuit) est vraie pour A, alors elle l'est encore pour B.
- 4. Dans cette question, on choisit la norme définie sur \mathcal{M}_p par :

$$\forall A = (a_{i,j}) \in \mathcal{M}_p, \qquad ||A|| = p \times \max_{1 \le i,j \le p} |a_{i,j}|$$

- (a) Montrer que cette norme est sous-multiplicative.
- (b) Montrer que le résultat (\heartsuit) est vrai lorsque la matrice A est diagonale, puis lorsque A est diagonalisable.
- (c) Soient $T \in \mathcal{M}_p$ une matrice triangulaire supérieure, dont tous les termes diagonaux valent 1, et la matrice $J = T I_p$. Montrer successivement que :
 - i. $J^p = 0$.
 - ii. Il existe un réel $M \geq 0$ tel que :

$$\forall k \ge p, \qquad p \le ||T^k|| \le M \cdot k^{p-1}$$

iii.
$$\lim_{k \to \infty} ||T^k||^{1/k} = 1$$
.

(d) Soient $A=(a_{i,j})\in \mathcal{M}_p$ et $B=(b_{i,j})\in \mathcal{M}_{pp}(\mathbb{R})$ deux matrices telles que :

$$\forall (i,j) \in [1,p]^2, \qquad |a_{i,j}| \le b_{i,j}$$

Montrer que:

$$\forall k \in \mathbb{N}^*, \qquad \|A^k\| \le \|B^k\|$$

- (e) Montrer que la propriété (\heartsuit) est vraie si la matrice A est triangulaire supérieure. (Dans le cas où r(A) > 0, on pourra utiliser la matrice $A' = \frac{1}{r(A)}A$).
- (f) Montrer que la propriété (\heartsuit) est vraie pour toute matrice de \mathscr{M}_p .
- 5. Montrer que la propriété (\heartsuit) est vraie pour toute matrice A de \mathscr{M}_p et pour toute norme sur \mathscr{M}_p .