LYCÉE CLEMENCEAU MPI/MPI*

Corrigé du Kdo du 31/01/2025

E.v.n.

Exercice 1. Soit $n \in \mathbb{N}^*$. Soit \mathcal{A}_n , respectivement \mathcal{S}_n , le sous-espace vectoriel des matrices de $\mathcal{M}_n(\mathbb{K})$ antisymétriques, respectivement symétriques.

- 1) Montrer que A_n et S_n sont fermés.
- 2) Soint A une matrice antisymétrique telle que la suite $(A^k)_{k\in\mathbb{N}}$ converge. Quelle est sa limite?
- 1) L'application $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$, $M \mapsto M M^T$ est linéaire sur un ev de dimension finie donc elle est continue. D'où $\mathcal{S}_n = \operatorname{Ker}(f) = f^{-1}\left(\{0_{\mathcal{M}_n(\mathbb{K})}\}\right)$ est un fermé car c'est l'image réciproque d'un fermé par une application continue \triangleright proposition 50 du chapitre XI.
 - On montre de même que \mathcal{A}_n est un fermé en utilisant l'application $\mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}), \ M \mapsto M + M^T$.
- 2) Soit L la limite de la suite convergente (A^k)_{k∈N}. La suite (A^{2k})_{k∈N} est extraite de la suite (A^k)_{k∈N}, elle converge donc aussi vers L ▷ proposition 14 du chapitre XI. De plus, chaque matrice A^{2k} est symétrique et l'ensemble S_n est fermé d'après la première question, donc la matrice L est aussi symétrique d'après la caractérisation séquentielle d'un fermé ▷ proposition 54 du chapitre XI.
 On montre de même que la matrice Lest antisymétrique car c'est la limite de la suite des matrices A^{2k+1} antisymétriques.
 Or A_n ∩ S_n = {0_{M_n(K)}}. Donc la matrice L est nulle.

Exercice 2. Soit $n \in \mathbb{N}^*$. Soit une matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que la suite $(A^k)_{k \in \mathbb{N}}$ converge. Montrer sa limite est un projecteur.

Soit L la limite de la suite convergente $(A^k)_{k\in\mathbb{N}}$.

D'une part, la suite $(A^{2k})_{k\in\mathbb{N}}$ est extraite de la suite $(A^k)_{k\in\mathbb{N}}$, elle converge donc aussi vers L, autrement dit :

$$A^{2k} \xrightarrow[k \to \infty]{} L.$$

D'autre part, la fonction $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}), M \mapsto M^2$ est continue (car \heartsuit), d'où $f(A^k) \underset{k \to \infty}{\longrightarrow} f(L)$, autrement dit :

$$A^{2k} \xrightarrow[k \to \infty]{} L^2.$$

Par unicité de la limite, $L=L^2$, donc L est un projecteur.

 \heartsuit Cette fonction f est continue car c'est la composée $g \circ h$ des fonctions continues

$$q:\mathcal{M}_n(\mathbb{K})\times\mathcal{M}_n(\mathbb{K})\to\mathcal{M}_n(\mathbb{K}),\ (M_1,M_2)\mapsto M_1M_2$$
 et $h:\mathcal{M}_n(\mathbb{K})\to\mathcal{M}_n(\mathbb{K})\times\mathcal{M}_n(\mathbb{K}),\ M\mapsto (M,M).$

La fonction g est continue car elle est bilinéaire sur un ev de dimension finie. La fonction h est continue car elle est linéaire sur un ev de dimension finie.

Exercice 3 (une preuve du théorème de Cayley-Hamilton). Soit $n \in \mathbb{N}^*$. On rappelle que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C}) \triangleright \text{exo 9 du TD 11}$.

- 1) Montrer que, si D est une matrice diagonale, alors $\chi_D(D) = 0$.
- 2) En déduire que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C}), \chi_A(A) = 0.$

- 1) Si la matrice D est diagonale, alors le polynôme $\prod_{\lambda \in \mathrm{Sp}(D)} (X \lambda)$ est annulateur de la matrice D (\triangleright revoir le théorème 31(iii) du chapitre IV et sa preuve) et donc, a fortiori, le polynôme caractéristique $\prod_{\lambda \in \mathrm{Sp}(D)} (X \lambda)^{m_{\lambda}}$ aussi.
- 2) En reprenant les notations de \triangleright l'exo 9 du TD 11, soit $\varepsilon = \frac{1}{2} \min_{\lambda_i \neq \lambda_j} |\lambda_i \lambda_j|$. On définit, pour chaque $k \in \mathbb{N}^*$, une matrice $A_k = A \operatorname{diag}\left(\frac{\varepsilon}{k}, \frac{\varepsilon}{2k}, \cdots, \frac{\varepsilon}{nk}\right)$ qui est diagonalisable car ses valeurs propres sont distinctes deux à deux. Par suite $0 = \chi_{A_k}(A_k) = \prod_{i=1}^n \left[(\lambda_i \frac{\varepsilon}{ik})I_n A_k \right]$. Or $\prod_{i=1}^n \left[(\lambda_i \frac{\varepsilon}{ik})I_n A_k \right] \xrightarrow[k \to \infty]{} \prod_{i=1}^n (\lambda_i I_n A) = \chi_A(A)$ car la fonction $[\mathcal{M}_n(\mathbb{C})]^n \to \mathcal{M}_n(\mathbb{C}), \ (M_1, \cdots, M_n) \to M_1 \cdots M_n$ est multilinéaire sur un ev de dimension finie, donc continue. Or $0 \xrightarrow[k \to \infty]{} 0$. Par unicité de la limite, $\chi_A(A) = 0$.