D.S. Nº 6 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient un exercice d'algèbre, un problème de probabilités et un problème d'analyse.

On attachera un grand soin à la rédaction. En particulier, chaque résultat ou conclusion devra être encadré.

On peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

EXERCICE : la factorisation QR (tiré de CCINP - 2022 - PSI - MATH)

Soit un entier $n \geq 2$. L'ensemble des matrices réelles carrées de taille n est noté $M_n(\mathbb{R})$.

L'ensemble $E_n=\mathrm{M}_{n,1}(\mathbb{R})$ des vecteurs colonnes est muni de son produit scalaire canonique $\langle\cdot,\cdot\rangle$ et de la norme associée $\|\cdot\|$: pour tous $X,Y\in E_n$,

$$\langle X, Y \rangle = X^T Y$$
 et $||X||^2 = \langle X, X \rangle$.

Soit (e_1, \dots, e_n) la base canonique de l'espace vectoriel E_n .

Soit $V \in E_n \setminus \{0_{E_n}\}$.

- 1. Soit $P_V = \frac{1}{\|V\|^2} V V^T$. Montrer que l'endomorphisme $f_V : X \mapsto P_V X$ de E_n est un projecteur : sur quel sous-espace vectoriel? par rapport à quel sous-espace vectoriel?
- 2. La matrice $Q_V = I_n 2\frac{1}{\|V\|^2}VV^T$ est appelée une matrice de Householder. Montrer que l'endomorphisme $g_V: X \mapsto Q_V X$ de E_n est une réflexion.
- 3. Soit $U \in E_n$ non colinéaire à V tel que ||U|| = ||V||. Calculer $Q_{U-V}U$.
- 4. En déduire que, pour tous $U' \in E_n$ et $V' \in E_n \setminus \{0_{E_n}\}$, il existe une matrice orthogonale Q' telle que Q'U' est colinéaire à V'.
- 5. Soit $A \in M_n(\mathbb{R})$. Montrer qu'il existe une matrice orthogonale Q', telle que Q'A est de la forme :

$$Q'A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix} \text{ où } \alpha \in \mathbb{R} \text{ et } B \in \mathcal{M}_{n-1}(\mathbb{R}).$$

- 6. Montrer que, pour tout $A \in M_2(\mathbb{R})$, il existe une matrice Q orthogonale telle que QA est triangulaire supérieure.
- 7. Montrer que, pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale telle que QA est triangulaire supérieure.
- 8. En déduire que, pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale et une matrice R triangulaire supérieure telles que A = QR.

PROBLÈME 1 : la loi forte des grands nombres (tiré de CCP - 2018 - PSI - MATH)

- (Ω, \mathcal{A}, P) désigne un espace probabilisé.
- Soit X une variable aléatoire discrète sur (Ω, \mathcal{A}, P) à valeurs dans [-1, 1], que l'on suppose **centrée**, c'est-à-dire admettant une espérance égale à 0.
- On considère dans ce problème une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables aléatoires discrètes sur (Ω,\mathcal{A},P) , indépendantes et de même loi que X. Pour tout $n\in\mathbb{N}^*$, on note :

$$S_n = \frac{X_1 + \dots + X_n}{n}$$

On cherche à montrer que la suite $(S_n)_{n\geq 1}$ converge presque sûrement vers la variable constante nulle, c'est-à-dire que $P\big(\left\{\omega\in\Omega\,;\,\,\lim_{n\to\infty}S_n(\omega)=0\right\}\big)=1.$ Il s'agit d'un cas particulier de **la loi forte des grands nombres**.

1. Majoration de $P(S_n \geq \varepsilon)$

- (a) Soit Y une variable aléatoire réelle sur (Ω, \mathcal{A}, P) . Montrer que si Y est bornée, alors Y est d'espérance finie
- (b) En déduire que, pour tout t > 0 et tout $n \in \mathbb{N}^*$, les variables aléatoires e^{tX} et e^{tnS_n} admettent une espérance et prouver, par récurrence, que :

$$\forall n \in \mathbb{N}^*, \ \forall t > 0, \quad E(e^{tnS_n}) = (E(e^{tX}))^n$$

- (c) Rappeler l'inégalité de Markov et ses hypothèses pour une variable aléatoire Y sur (Ω, \mathcal{A}, P) .
- (d) Montrer que, pour tout t > 0, pour tout $\varepsilon > 0$ et pour tout $n \in \mathbb{N}^*$:

$$P(S_n \ge \varepsilon) = P(e^{tnS_n} \ge e^{tn\varepsilon}) \le \frac{(E(e^{tX}))^n}{e^{tn\varepsilon}}$$

2. Majoration de $E(e^{tX})$

(a) Soit a > 1. On considère la fonction g_a définie par :

$$\forall x \in \mathbb{R}, \quad g_a(x) = \frac{1-x}{2}a^{-1} + \frac{1+x}{2}a - a^x$$

Montrer que la fonction g_a est dérivable sur \mathbb{R} et que la fonction g'_a est décroissante sur \mathbb{R} . En déduire, en remarquant que $g_a(-1) = g_a(1) = 0$, que, pour tout $x \in [-1,1]$, $g_a(x) \ge 0$.

(b) En déduire que :

$$\forall t > 0, \quad \forall x \in [-1, 1], \quad e^{tx} \le \frac{1 - x}{2} e^{-t} + \frac{1 + x}{2} e^{t}$$

(c) En déduire que :

$$\forall t > 0, \quad E(e^{tX}) \le \operatorname{ch}(t)$$

(d) Montrer que:

$$\forall k \in \mathbb{N}, \quad \forall t \in \mathbb{R}, \quad \frac{t^{2k}}{(2k)!} \le \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$$

En déduire que :

$$\forall t > 0, \quad E(e^{tX}) \le e^{t^2/2}$$

3. Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

- (a) Montrer que la fonction $\rho: t \longmapsto e^{-nt\varepsilon + nt^2/2}$ atteint un minimum en un point que l'on précisera.
- (b) En déduire que $P(S_n \ge \varepsilon) \le e^{-n\varepsilon^2/2}$.
- (c) Montrer que $P(|S_n| \ge \varepsilon) \le 2e^{-n\varepsilon^2/2}$.
- (d) Pour n grand, cette dernière majoration est-elle meilleure que celle donnée par la loi faible des grands nombres?

4. Conclusion

- (a) Montrer que, pour tout réel $\varepsilon > 0$, la série de terme général $P(|S_n| \ge \varepsilon)$ converge.
- (b) On fixe un réel $\varepsilon > 0$. On note, pour tout $n \in \mathbb{N}^*$:

$$B_n(\varepsilon) = \bigcup_{m \ge n} \{ \omega \in \Omega \mid |S_m(\omega)| \ge \varepsilon \}$$

Montrer que, pour tout $n \in \mathbb{N}^*$, $B_n(\varepsilon)$ est un événement et que $P\left(\bigcap_{n \in \mathbb{N}^*} B_n(\varepsilon)\right) = 0$.

(c) Soit $k \in \mathbb{N}^*$. Posons:

$$\Omega_k = \left\{ \omega \in \Omega \mid \exists n \in \mathbb{N}^*, \forall m \ge n, |S_m(\omega)| < \frac{1}{k} \right\}$$

Montrer que Ω_k est l'événement $\bigcup_{n\in\mathbb{N}^*} \overline{B_n(\frac{1}{k})}$ et en déduire $P(\Omega_k)$.

- (d) Écrire l'ensemble $A = \left\{ \omega \in \Omega \mid \lim_{n \to \infty} S_n(\omega) = 0 \right\}$ à l'aide des événements $\Omega_k, k \in \mathbb{N}^*$. En déduire que A est un événement.
- (e) Déduire des questions précédentes que P(A)=1. On dit alors que la suite $(S_n)_{n\geq 1}$ converge presque sûrement vers 0.
- (f) Soient $p \in]0,1[$ et $(Y_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant toutes la même loi de Bernoulli de paramètre p. Montrer que la suite $\left(\frac{Y_1+\dots+Y_n}{n}-p\right)_{n\geq 1}$ converge presque sûrement vers 0.

Problème 2: les intégrales de Fresnel (tiré de CCINP - 2022 - MP - MATH 1)

Soit H la fonction définie, pour tout $x \in \mathbb{R}$, par $H(x) = \int_0^x e^{it^2} dt$, où e^{it^2} signifie $\exp(it^2)$.

- 1. Montrer que l'intégrale généralisée $\int_{2\pi}^{+\infty} \frac{e^{iu}}{\sqrt{u}} du$ est convergente.
- 2. En déduire que l'intégrale généralisée $\int_0^{+\infty} e^{it^2} dt$ converge.
- 3. Soit $(x,t) \in \mathbb{R}^2$. Déterminer les modules des nombres complexes $e^{-x^2\left(t^2-i\right)}$ et t^2-i .
- 4. Soient $f(x,t) = \frac{e^{-x^2(t^2-i)}}{t^2-i}$ et $g(x) = \int_{-\infty}^{+\infty} f(x,t) dt$.

Montrer que la fonction g est définie et continue sur $[0, +\infty[$.

- 5. Montrer que : $\lim_{x \to +\infty} g(x) = 0$.
- 6. Montrer que g est de classe \mathcal{C}^1 sur $]0, +\infty[$
- 7. On admet que l'intégrale $\int_{-\infty}^{+\infty} e^{-t^2} dt$ converge et est égale à $\sqrt{\pi}$. Vérifier que, pour tout x > 0,

$$g'(x) = -2\sqrt{\pi}e^{ix^2}.$$

8. On admet ensuite que:

$$\frac{1}{X^2-i} = \frac{1-i}{4} \cdot \left(\frac{\sqrt{2}}{2} \cdot \frac{2X-\sqrt{2}}{X^2-X\sqrt{2}+1} + \frac{i}{X^2-X\sqrt{2}+1} - \frac{\sqrt{2}}{2} \cdot \frac{2X+\sqrt{2}}{X^2+X\sqrt{2}+1} + \frac{i}{X^2+X\sqrt{2}+1}\right).$$

- (a) Montrer que l'intégrale généralisée $\int_{-\infty}^{+\infty} \frac{1}{t^2 \sqrt{2}t + 1} dt$ est convergente et est égale à $\pi\sqrt{2}$.
- (b) Donner de même la valeur de $\int_{-\infty}^{+\infty} \frac{1}{t^2 + \sqrt{2}t + 1} \, \mathrm{d}t$.
- (c) Montrer que $\int_{-\infty}^{+\infty} \left(\frac{2t \sqrt{2}}{t^2 t\sqrt{2} + 1} \frac{2t + \sqrt{2}}{t^2 + t\sqrt{2} + 1} \right) dt = 0.$
- 9. Montrer que, pour tout x > 0,

$$g(x) = \frac{(1+i)\pi}{\sqrt{2}} - 2\sqrt{\pi} H(x).$$

10. En déduire les valeurs des intégrales de Fresnel $\int_0^{+\infty} \cos\left(t^2\right) dt$ et $\int_0^{+\infty} \sin\left(t^2\right) dt$.