Corrigé du D.S. nº 6 de mathématiques

EXERCICE : la factorisation QR (tiré de CCINP - 2022 - PSI - MATH)

Soit un entier $n \geq 2$. L'ensemble des matrices réelles carrées de taille n est noté $M_n(\mathbb{R})$.

L'ensemble $E_n=\mathrm{M}_{n,1}(\mathbb{R})$ des vecteurs colonnes est muni de son produit scalaire canonique $\langle\cdot,\cdot\rangle$ et de la norme associée $\|\cdot\|$: pour tous $X,Y\in E_n$,

$$\langle X, Y \rangle = X^T Y$$
 et $||X||^2 = \langle X, X \rangle$.

Soit (e_1, \dots, e_n) la base canonique de l'espace vectoriel E_n .

Soit $V \in E_n \setminus \{0_{E_n}\}$.

- 1. Soit $P_V = \frac{1}{\|V\|^2} VV^T$. Montrer que l'endomorphisme $f_V : X \mapsto P_V X$ de E_n est un projecteur : sur quel sous-espace vectoriel? par rapport à quel sous-espace vectoriel?
- 2. La matrice $Q_V = I_n 2\frac{1}{\|V\|^2}VV^T$ est appelée une matrice de Householder. Montrer que l'endomorphisme $g_V: X \mapsto Q_V X$ de E_n est une réflexion.
- 3. Soit $U \in E_n$ non colinéaire à V tel que ||U|| = ||V||. Calculer $Q_{U-V}U$.
- 4. En déduire que, pour tous $U' \in E_n$ et $V' \in E_n \setminus \{0_{E_n}\}$, il existe une matrice orthogonale Q' telle que Q'U' est colinéaire à V'.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice orthogonale Q', telle que Q'A est de la forme :

$$Q'A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix} \text{ où } \alpha \in \mathbb{R} \text{ et } B \in \mathcal{M}_{n-1}(\mathbb{R}).$$

- 6. Montrer que, pour tout $A \in M_2(\mathbb{R})$, il existe une matrice Q orthogonale telle que QA est triangulaire supérieure.
- 7. Montrer que, pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale telle que QA est triangulaire supérieure.
- 8. En déduire que, pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale et une matrice R triangulaire supérieure telles que A = QR.

Donc l'endomorphisme f_V est le projecteur sur la droite vectorielle $D = \operatorname{Vect}(V)$ parallèlement à D^{\perp} .

^{1.} Le $sev\ D=\mathrm{Vect}(V)$ est de dimension finie, d'où $E=D\oplus D^\perp$. Décomposons chaque vecteur $X\in E_n$ dans cette somme directe adaptée : il existe $(X_1,X_2)\in D\times D^\perp$ tel que $X=X_1+X_2$. D'une part, $\exists \alpha\in\mathbb{R}, X_1=\alpha V$. D'où $P_VX_1=\frac{1}{\|V\|^2}(VV^T)(\alpha V)=\alpha\frac{1}{\|V\|^2}(VV^T)V=\alpha\frac{1}{\|V\|^2}V(V^TV)=\alpha V=X_1$. D'autre part, $P_VX_2=\frac{1}{\|V\|^2}(VV^T)X_2=\frac{1}{\|V\|^2}V(V^TX_2)=0$ car $X_2\perp V$.

2. D'après la question précédente, la matrice $S_V = 2P_V - I_n$ représente, dans la base canonique de E_n , la symétrie orthogonale par rapport à la droite D. Or $S_V = -Q_V$, d'où

l'endomorphisme q_V est la symétrie orthogonale par rapport à l'hyperplan D^{\perp} . Donc q_V est une réflexion

Définition XII.28.

3. De la question précédente, on déduit que

$$Q_{U-V}(U-V) = -(U-V)$$
 et $Q_{U-V}(U+V) = U+V$

car les vecteurs U-V et U+V sont orthogonaux. En effet, $\langle U-V, U+V \rangle = \|U\|^2 - \|V\|^2 = 0$.

Par linéarité,

$$Q_{U-V}U=V$$

$$Q_{U-V}U = V$$
 $\operatorname{car} U = \frac{1}{2}(U+V) + \frac{1}{2}(U-V).$

Si les vecteurs U' et V' sont colinéaires, alors la matrice I_n convient. Sinon, on peut poser $U = \frac{1}{\|U'\|}U'$ et $V = \frac{1}{\|V'\|}V'$ 4.

car ni U' ni V' n'est nul. Ces deux vecteurs ne sont pas colinéaires et ont la même norme, qui vaut 1. De la question

précédente, on tire que $Q_{U-V}U=V$. Donc, en posant

$$Q' = Q_{U-V}$$

- $Q'U' = \frac{\|U'\|}{\|V'\|}V'$ est colinéaire à V';
- ullet la matrice Q' est orthogonale car elle représente une réflexion (donc une isométrie) dans la base canonique de E_n (donc une base orthonormée).
- 5. On pose U' la première colonne de la matrice carrée A et $V'=e_1$ qui est bien non nul. De la question précédente, on tire

une matrice orthogonale

Q' telle que : $\exists \alpha \in \mathbb{R}, \ Q'U' = \alpha V'$. La matrice carrée Q'A est alors de la forme voulue.

6. Ici n=2, le bloc B de la question précédente est donc de taille 1 et

la matrice Q'A est donc triangulaire supérieure.

- 7. Par récurrence sur la taille $n \geq 2$:
 - l'initialisation est réalisée par la question précédente ;
 - on suppose la propriété vraie pour la taille n-1. Soit $A\in M_n(\mathbb{R})$. On sait, d'après la question 5, qu'il existe

$$Q' \in O_n(\mathbb{R})$$
 orthogonale telle que $Q'A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$. Par hypothèse de récurrence, il existe $Q'' \in O_{n-1}(\mathbb{R})$

telle que Q''B est une matrice triangulaire supérieure R. La matrice $Q = \begin{pmatrix} 1 & 0 \\ 0 & Q'' \end{pmatrix} \cdot Q'$ est alors orthogonale (car c'est un produit de deux matrices orthogonales) et la matrice $QA = \begin{pmatrix} \alpha & 0 \\ 0 & R \end{pmatrix}$ est triangulaire supérieure.

8. De la question précédente, on tire une matrice Q orthogonale et une matrice R triangulaire supérieure telles que $Q \cdot A = R$.

Donc

 $A = Q^T \cdot R$ est le produit de la matrice Q^T , qui est orthogonale, et de la matrice triangulaire supérieure R.

PROBLÈME~1: la loi forte des grands nombres (tiré de CCP - 2018 - PSI - MATH)

- (Ω, \mathcal{A}, P) désigne un espace probabilisé.
- Soit X une variable aléatoire discrète sur (Ω, \mathcal{A}, P) à valeurs dans [-1, 1], que l'on suppose **centrée**, c'est-à-dire admettant une espérance égale à 0.
- On considère dans ce problème une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables aléatoires discrètes sur (Ω, \mathcal{A}, P) , indépendantes et de même loi que X. Pour tout $n\in\mathbb{N}^*$, on note :

$$S_n = \frac{X_1 + \dots + X_n}{n}$$

On cherche à montrer que la suite $(S_n)_{n\geq 1}$ converge presque sûrement vers la variable constante nulle, c'est-à-dire que $P\left(\left\{\omega\in\Omega\,;\,\lim_{n\to\infty}S_n(\omega)=0\right\}\right)=1.$ Il s'agit d'un cas particulier de **la loi forte des grands nombres**.

1. Majoration de $P(S_n \geq \varepsilon)$

- (a) Soit Y une variable aléatoire réelle sur (Ω, \mathcal{A}, P) . Montrer que si Y est bornée, alors Y est d'espérance finie.
- (b) En déduire que, pour tout t > 0 et tout $n \in \mathbb{N}^*$, les variables aléatoires e^{tX} et e^{tnS_n} admettent une espérance et prouver, par récurrence, que :

$$\forall n \in \mathbb{N}^*, \ \forall t > 0, \quad E(e^{tnS_n}) = (E(e^{tX}))^n$$

- (c) Rappeler l'inégalité de Markov et ses hypothèses pour une variable aléatoire Y sur (Ω, \mathcal{A}, P) .
- (d) Montrer que, pour tout t > 0, pour tout $\varepsilon > 0$ et pour tout $n \in \mathbb{N}^*$:

$$P(S_n \ge \varepsilon) = P(e^{tnS_n} \ge e^{tn\varepsilon}) \le \frac{(E(e^{tX}))^n}{e^{tn\varepsilon}}$$

2. Majoration de $E(e^{tX})$

(a) Soit a > 1. On considère la fonction g_a définie par :

$$\forall x \in \mathbb{R}, \quad g_a(x) = \frac{1-x}{2}a^{-1} + \frac{1+x}{2}a - a^x$$

Montrer que la fonction g_a est dérivable sur \mathbb{R} et que la fonction g'_a est décroissante sur \mathbb{R} . En déduire, en remarquant que $g_a(-1) = g_a(1) = 0$, que, pour tout $x \in [-1,1]$, $g_a(x) \ge 0$.

(b) En déduire que :

$$\forall t > 0, \quad \forall x \in [-1, 1], \quad e^{tx} \le \frac{1 - x}{2} e^{-t} + \frac{1 + x}{2} e^{t}$$

(c) En déduire que :

$$\forall t > 0, \quad E(e^{tX}) \le \operatorname{ch}(t)$$

(d) Montrer que:

$$\forall k \in \mathbb{N}, \quad \forall t \in \mathbb{R}, \quad \frac{t^{2k}}{(2k)!} \le \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$$

En déduire que :

$$\forall t > 0, \quad E(e^{tX}) \le e^{t^2/2}$$

3. Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

- (a) Montrer que la fonction $\rho: t \longmapsto e^{-nt\varepsilon + nt^2/2}$ atteint un minimum en un point que l'on précisera.
- (b) En déduire que $P(S_n \ge \varepsilon) \le e^{-n\varepsilon^2/2}$.
- (c) Montrer que $P(|S_n| \ge \varepsilon) \le 2e^{-n\varepsilon^2/2}$.
- (d) Pour n grand, cette dernière majoration est-elle meilleure que celle donnée par la loi faible des grands nombres?

4. Conclusion

- (a) Montrer que, pour tout réel $\varepsilon > 0$, la série de terme général $P(|S_n| \ge \varepsilon)$ converge.
- (b) On fixe un réel $\varepsilon > 0$. On note, pour tout $n \in \mathbb{N}^*$:

$$B_n(\varepsilon) = \bigcup_{m \ge n} \{ \omega \in \Omega \mid |S_m(\omega)| \ge \varepsilon \}$$

Montrer que, pour tout $n \in \mathbb{N}^*$, $B_n(\varepsilon)$ est un événement et que $P\left(\bigcap_{n \in \mathbb{N}^*} B_n(\varepsilon)\right) = 0$.

(c) Soit $k \in \mathbb{N}^*$. Posons:

$$\Omega_k = \left\{ \omega \in \Omega \mid \exists n \in \mathbb{N}^*, \forall m \ge n, |S_m(\omega)| < \frac{1}{k} \right\}$$

Montrer que Ω_k est l'événement $\bigcup_{n\in\mathbb{N}^*} \overline{B_n(\frac{1}{k})}$ et en déduire $P(\Omega_k)$.

- (d) Écrire l'ensemble $A = \left\{ \omega \in \Omega \mid \lim_{n \to \infty} S_n(\omega) = 0 \right\}$ à l'aide des événements Ω_k , $k \in \mathbb{N}^*$. En déduire que A est un événement.
- (e) Déduire des questions précédentes que P(A)=1. On dit alors que la suite $(S_n)_{n\geq 1}$ converge presque sûrement vers 0.
- (f) Soient $p \in]0,1[$ et $(Y_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant toutes la même loi de Bernoulli de paramètre p. Montrer que la suite $\left(\frac{Y_1+\cdots+Y_n}{n}-p\right)_{n\geq 1}$ converge presque sûrement vers 0.

1. Majoration de $P(S_n \geq \varepsilon)$

- (a) La variable Y étant bornée, il existe $m \ge 0$ tel que, pour tout $y \in Y(\Omega), \ |y| \le m$ et donc $|yP(Y=y)| \le mP(Y=y)$. Comme la série $\sum P(Y=y)$ est convergente (de somme égale à 1), la série $\sum yP(Y=y)$ est absolument convergente par comparaison. Donc Y est d'espérance finie .
- (b) Soient t > 0 et $n \in \mathbb{N}^*$.
 - Comme la variable aléatoire X est majorée par 1, la variable aléatoire e^{tX} est positive et majorée par e^t donc bornée. Selon la question précédente, la variable e^{tX} est alors d'espérance finie .
 - Comme $(nS_n)(\Omega) \subset [-n,n]$, la variable aléatoire e^{tnS_n} est positive et majorée par e^{tn} donc bornée. Toujours selon la question précédente, la variable e^{tnS_n} est d'espérance finie .

— L'inégalité à prouver est vraie au rang 1. Supposons-la vraie à un rang n-1. D'une part, $e^{tnS_n}=e^{t(X_1+\cdots+X_n)}=e^{t(X_1+\cdots+X_{n-1})}\cdot e^{tX_n}=e^{t(n-1)S_{n-1}}\times e^{tX_n}$. D'autre part, comme les variables X_1,\ldots,X_n sont indépendantes, les variables $e^{t(n-1)S_{n-1}}$ et e^{tX_n} le sont aussi d'après le lemme des coalitions \triangleright **Proposition XIV.4**. Par conséquent \triangleright **Théorème XIV.11**:

$$\forall t > 0, \ E(e^{tnS_n}) = E(e^{t(n-1)S_{n-1}}) \times E(e^{tX_n}) = (E(e^{tX}))^{n-1} \cdot E(e^{tX}).$$

Donc
$$\forall n \in \mathbb{N}^*, \ \forall t > 0, I \ E(e^{tnS_n}) = (E(e^{tX}))^n$$

(c) **Lemme X.29**

Si la variable Y est à valeurs positives et admet une espérance, alors, pour tout $\alpha > 0, \ P(Y \ge \alpha) \le \frac{E(Y)}{\alpha}$

(d) Soient t > 0, $n \in \mathbb{N}^*$ et $\varepsilon > 0$. Par stricte croissance de la fonction exponentielle, on a l'égalité des événements $(S_n \ge \varepsilon)$ et $(e^{tnS_n} \ge e^{tn\varepsilon})$. Comme la variable e^{tnS_n} est positive et d'espérance finie et $e^{tn\varepsilon} > 0$, l'inégalité de Markov donne alors :

$$P(S_n \ge \varepsilon) = P(e^{tnS_n} \ge e^{tn\varepsilon}) \le \frac{(E(e^{tX}))^n}{e^{tn\varepsilon}}$$

2. Majoration de $E(e^{tX})$

(a) Soit a > 1. La fonction $g_a: x \mapsto \frac{1-x}{2}a^{-1} + \frac{1+x}{2}a - e^{x \ln a}$ est deux fois dérivable sur \mathbb{R} par opérations et :

$$\forall x \in \mathbb{R}, \qquad g_a'(x) = \frac{a - a^{-1}}{2} - \ln(a)a^x \qquad \text{et} \qquad g_a''(x) = -(\ln a)^2 a^x \le 0$$

Ainsi, la fonction g_a' est décroissante sur $\mathbb R$. Comme $g_a(-1)=g_a(1)=0,$ le \vartriangleright théorème de Rolle assure

l'existence d'un réel $c \in]-1,1[$ tel que $g'_a(c)=0$. La décroissance de g'_a entraı̂ne alors que $g'_a \geq 0$ sur $]-\infty,c]$ et $g'_a(c) \leq 0$ sur $[c,+\infty[$. La fonction g_a est en particulier croissante sur [-1,c] et décroissante sur [c,1], avec

$$g_a(-1) = g_a(1) = 0$$
. Elle est donc positive sur $[-1,1]$. On a donc bien, pour tout $x \in [-1,1], g_a(x) \ge 0$

- (b) Soit t > 0. On choisit $a = e^t > 1$ et on a alors $g_{e^t}(x) \ge 0$, pour tout $x \in [-1, 1]$ et donc $e^{tx} \le \frac{1-x}{2} e^{-t} + \frac{1+x}{2} e^t$
- (c) Comme la variable X est à valeurs dans [-1,1], on a, selon la question précédente :

$$\forall t > 0, \quad e^{tX} \le \frac{1-X}{2} e^{-t} + \frac{1+X}{2} e^{t}$$

Les variables aléatoires X et e^{tX} admettent une espérance donc, par linéarité et croissance de l'espérance, on en déduit ·

$$E(\mathrm{e}^{tX}) \leq \frac{1}{2}(\mathrm{e}^{-t}(E(1)-E(X))+\mathrm{e}^{t}(E(1)+E(X)) = \frac{\mathrm{e}^{t}+\mathrm{e}^{-t}}{2} \quad \text{puisque X est centrée et $E(1)=1$}.$$

Ainsi, pour tout
$$t > 0$$
, $E(e^{tX}) \le ch(t)$

(d) Soit $t \in \mathbb{R}$. Comme $t^{2k} \geq 0$, pour tout $k \in \mathbb{N}$, il suffit de montrer que, pour tout $k \in \mathbb{N}$, $\frac{(2k)!}{2^k k!} \geq 1$.

— Pour k = 0, on a $\frac{(2 \times 0)!}{2^0 0!} = 1 \geq 1$.

$$- \text{ Pour } k \geq 1 \text{, on a } \frac{(2k)!}{2^k k!} = \frac{(k+1)\cdots(k+k)}{2^k} \geq \frac{\overbrace{2\times\cdots\times2}^{k \text{ termes}}}{2^k} = 1.$$

Ainsi, pour tout
$$k \in \mathbb{N}$$
, $\frac{(2k)!}{2^k k!} \ge 1$ et donc

Ainsi, pour tout
$$k \in \mathbb{N}$$
, $\frac{(2k)!}{2^k k!} \ge 1$ et donc, pour tout $k \in \mathbb{N}$ et tout $t \in \mathbb{R}$, $\frac{t^{2k}}{(2k)!} \le \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$

On reconnaît les termes généraux des séries de sommes ch(t) et $e^{t^2/2}$, ce qui entraîne, en sommant cette inégalité pour k=0 à $+\infty$, que $\operatorname{ch}(t) \leq \operatorname{e}^{t^2/2}$. À l'aide de la question précédente, on conclut par transitivité que,

pour tout
$$t > 0$$
, $E(e^{tX}) \le e^{t^2/2}$

3. Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

(a) La fonction exp étant strictement croissante sur \mathbb{R} , la fonction $\rho:t\longmapsto \mathrm{e}^{-nt\varepsilon+nt^2/2}$ admet un minimum en un point t_0 si, et seulement si la fonction $t \mapsto -nt\varepsilon + nt^2/2$ admet un minimum en t_0 . L'étude de cette fonction (polynomiale du second degré) montre qu'elle est décroissante sur $]-\infty,\varepsilon]$ et croissante sur $[\varepsilon,+\infty[$, donc

$$\rho$$
admet un minimum en ε égal à $\rho(\varepsilon)=\mathrm{e}^{-n\varepsilon^2/2}$

(b) Avec la question 1-d et 2-d, on obtient :

$$P(S_n \ge \varepsilon) \le \frac{(e^{t^2/2})^n}{e^{nt\varepsilon}} = e^{-nt\varepsilon + nt^2/2} = \rho(t)$$

La fonction ρ admet pour minorant $P(S_n \geq \varepsilon)$, donc son minimum $\rho(\varepsilon)$ est supérieur à $P(S_n \geq \varepsilon)$. Ainsi,

$$P(S_n \ge \varepsilon) \le e^{-n\varepsilon^2/2}$$

(c) Les variables aléatoires $-X_i$ sont encore indépendantes, à valeurs dans [-1,1] et centrées $(E(-X_i)=-E(X_i)=0)$. Par conséquent, la variable aléatoire $-S_n$ vérifie aussi $P(-S_n \ge \varepsilon) \le e^{-n\varepsilon^2/2}$. Comme $(|S_n| \ge \varepsilon) = (S_n \ge \varepsilon) \cup (-S_n \ge \varepsilon) = (S_n \ge \varepsilon) \cup (S_n \le -\varepsilon)$ et que l'union est disjointe, on obtient :

$$P(|S_n| \ge \varepsilon) = P(S_n \ge \varepsilon) + P(-S_n \ge \varepsilon) \le 2 e^{-n\varepsilon^2/2}$$

(d) Les variables X_i sont indépendantes et de même loi, admettant une espérance 0 et une variance V(X) selon la question 1-a. La loi faible des grands nombres > Théorème XIV.16 donne alors :

$$\forall \varepsilon>0, \quad \forall n\in \mathbb{N}, \quad P\Big(\left|\frac{X_1+\dots+X_n}{n}-0\right|\geq \varepsilon\Big)\leq \frac{V(X)}{n\varepsilon^2} \qquad \text{i.e.} \qquad P(|S_n|\geq \varepsilon)\leq \frac{V(X)}{n\varepsilon^2}$$

Comme $n e^{-n\varepsilon^2/2} \xrightarrow[n \to \infty]{} 0$ par croissance comparée, on a $2 e^{-n\varepsilon^2/2} = o(\frac{V(X)}{n\varepsilon^2})$ et donc, pour n grand, la majoration obtenue à la question précédente est bien meilleure que celle fournie par la loi faible des grands nombres.

- 4. Conclusion
 - (a) Soit $\varepsilon > 0$. Pour tout $n \in \mathbb{N}^*$, on a $P(|S_n| \ge \varepsilon) \le 2\left(e^{-\varepsilon^2/2}\right)^n$ et $|e^{-\varepsilon^2/2}| < 1$, puisque $\varepsilon^2/2 > 0$. Par comparaison la série de terme général $P(|S_n| \geq \varepsilon)$ converge à une série géométrique convergente,
 - (b) Soit $\varepsilon > 0$.
 - En notant, pour tout $m \in \mathbb{N}^*$, $A_m = (|S_m| \geq \varepsilon)$, on constate que les A_m sont des événements (des éléments de la tribu \mathcal{A}) et que, pour tout $n \in \mathbb{N}^*$, $B_n(\varepsilon)$ est une union dénombrable d'événements, donc

$$B_n(\varepsilon)$$
 est un événement

La série de terme général $P(|S_n| \geq \varepsilon)$ étant convergente, son reste d'ordre n-1 est bien défini et, par \triangleright σ -sous-additivité (Proposition VI.13)

$$0 \le P(B_n(\varepsilon)) \le \sum_{m=n}^{+\infty} P(|S_m| \ge \varepsilon) \underset{n \to \infty}{\longrightarrow} 0$$

Donc $P(B_n(\varepsilon)) \underset{n \to \infty}{\longrightarrow} 0$ par le théorème des gendarmes. D'autre part, pour tout $n \in \mathbb{N}^*$, on a $B_{n+1}(\varepsilon = \bigcup_{m \ge n+1} A_m \subset \bigcup_{m \ge n} A_m = B_n(\varepsilon)$, ce qui signifie que la suite

 $(B_n(\varepsilon))_{n\in\mathbb{N}^*}$ est décroissante (pour l'inclusion). Ainsi, par continuité décroissante \triangleright **Théorème VI.9**:

$$P\left(\bigcap_{n\in\mathbb{N}^*} B_n(\varepsilon)\right) = \lim_{n\to\infty} P(B_n(\varepsilon)) = 0$$

(c) Soient $k \in \mathbb{N}^*$ et $\omega \in \Omega$:

$$\omega \in \overline{\Omega_k} \quad \Longleftrightarrow \quad \forall n \in \mathbb{N}^*, \ \exists m \ge n, \ |S_m(\omega)| \ge \frac{1}{k}$$

$$\iff \quad \forall n \in \mathbb{N}^*, \ \omega \in \bigcup_{m \ge n} \left(|S_m| \ge \frac{1}{k} \right) = B_n \left(\frac{1}{k} \right)$$

$$\iff \quad \omega \in \bigcap_{n \in \mathbb{N}^*} B_n \left(\frac{1}{k} \right)$$

Ainsi,
$$\overline{\Omega_k} = \bigcap_{n \in \mathbb{N}^*} B_n\left(\frac{1}{k}\right)$$
 et donc $\Omega_k = \bigcup_{n \in \mathbb{N}^*} \overline{B_n\left(\frac{1}{k}\right)}$

$$\Omega_k = \bigcup_{n \in \mathbb{N}^*} \overline{B_n\left(\frac{1}{k}\right)}$$

Comme $\varepsilon = \frac{1}{k} > 0$, la question précédente donne $P(\overline{\Omega_k}) = 0$ et donc $P(\Omega_k) = 1 - P(\overline{\Omega_k}) = 1 - 0 = 1$

$$P(\Omega_k) = 1 - P(\overline{\Omega_k}) = 1 - 0 = 1$$

(d) Soit $\omega \in \Omega$:

$$\omega \in A \quad \iff \quad \forall k \in \mathbb{N}^*, \ \exists n \in \mathbb{N}^*, \ \forall m \ge n, \ |S_m(\omega)| < \frac{1}{k}$$

$$\iff \quad \forall k \in \mathbb{N}^*, \ \omega \in \Omega_k \quad \text{(par définition de } \Omega_k)$$

$$\iff \quad \omega \in \bigcap_{k \in \mathbb{N}^*} \Omega_k$$

 $A=\bigcap_{k\in\mathbb{N}^*}\Omega_k$ est l'intersection dénombrable d'événements, donc un événement Ainsi,

(e) On utilise à nouveau la continuité décroissante. Soit $k \in \mathbb{N}^*$:

$$\forall m \in \mathbb{N}^*, \quad \left(|S_m| < \frac{1}{k+1}\right) \subset \left(|S_m| < \frac{1}{k}\right) \quad \text{ d'où } \quad \forall n \in \mathbb{N}^*, \quad \overline{B_n\left(\frac{1}{k+1}\right)} \subset \overline{B_n\left(\frac{1}{k}\right)}$$
 d'où
$$\Omega_{k+1} \subset \Omega_k$$

La suite $(\Omega_k)_{k\in\mathbb{N}^*}$ est alors décroissante et donc :

$$P(A) = \lim_{k \to \infty} P(\Omega_k) = \lim_{k \to \infty} 1 = 1$$

(f) Notons, pour tout $n \in \mathbb{N}^*$, $Y_n^* = Y_n - p$. Par linéarité, les variables Y_n^* sont d'espérance finie égale à $E(Y_n^*) = p - p = 0$. Elles sont donc centrées et à valeurs dans $\{-p, 1-p\} \subset [-1, 1]$. Le résultat précédent montre que

la suite de terme général $S_n^*=\frac{Y_1^*+\cdots+Y_n^*}{n}=\frac{Y_1+\cdots+Y_n}{n}-p$ converge presque sûrement vers 0

PROBLÈME 2 : les intégrales de Fresnel (tiré de CCINP - 2022 - MP - MATH 1)

Soit H la fonction définie, pour tout $x \in \mathbb{R}$, par $H(x) = \int_0^x e^{it^2} dt$, où e^{it^2} signifie $\exp\left(it^2\right)$.

- 1. Montrer que l'intégrale généralisée $\int_{2\pi}^{+\infty} \frac{e^{iu}}{\sqrt{u}} du$ est convergente.
- 2. En déduire que l'intégrale généralisée $\int_0^{+\infty} e^{it^2} dt$ converge.
- 3. Soit $(x,t) \in \mathbb{R}^2$. Déterminer les modules des nombres complexes $e^{-x^2\left(t^2-i\right)}$ et t^2-i .
- 4. Soient $f(x,t) = \frac{e^{-x^2(t^2-i)}}{t^2-i}$ et $g(x) = \int_{-\infty}^{+\infty} f(x,t) dt$.

Montrer que la fonction g est définie et continue sur $[0, +\infty[$.

- 5. Montrer que : $\lim_{x \to +\infty} g(x) = 0$.
- 6. Montrer que g est de classe \mathcal{C}^1 sur $]0, +\infty[$.
- 7. On admet que l'intégrale $\int_{-\infty}^{+\infty} e^{-t^2} dt$ converge et est égale à $\sqrt{\pi}$. Vérifier que, pour tout x > 0,

$$g'(x) = -2\sqrt{\pi}e^{ix^2}.$$

8. On admet ensuite que :

$$\frac{1}{X^2-i} = \frac{1-i}{4} \cdot \left(\frac{\sqrt{2}}{2} \cdot \frac{2X-\sqrt{2}}{X^2-X\sqrt{2}+1} + \frac{i}{X^2-X\sqrt{2}+1} - \frac{\sqrt{2}}{2} \cdot \frac{2X+\sqrt{2}}{X^2+X\sqrt{2}+1} + \frac{i}{X^2+X\sqrt{2}+1} \right).$$

- (a) Montrer que l'intégrale généralisée $\int_{-\infty}^{+\infty} \frac{1}{t^2 \sqrt{2}t + 1} dt$ est convergente et est égale à $\pi\sqrt{2}$.
- (b) Donner de même la valeur de $\int_{-\infty}^{+\infty} \frac{1}{t^2 + \sqrt{2}t + 1} dt$.
- (c) Montrer que $\int_{-\infty}^{+\infty} \left(\frac{2t \sqrt{2}}{t^2 t\sqrt{2} + 1} \frac{2t + \sqrt{2}}{t^2 + t\sqrt{2} + 1} \right) dt = 0.$
- 9. Montrer que, pour tout x > 0,

$$g(x) = \frac{(1+i)\pi}{\sqrt{2}} - 2\sqrt{\pi} H(x).$$

- 10. En déduire les valeurs des intégrales de Fresnel $\int_0^{+\infty} \cos\left(t^2\right) dt$ et $\int_0^{+\infty} \sin\left(t^2\right) dt$.
- 1. Soit $x \ge \sqrt{2\pi}$. Les fonctions $u \longmapsto \frac{1}{i} \mathrm{e}^{iu}$ et $u \longmapsto u^{-1/2}$ sont de classe \mathcal{C}^1 sur $\left[2\pi, x^2\right]$, on peut donc intégrer par parties :

$$\int_{2\pi}^{x^2} \frac{\mathrm{e}^{iu}}{\sqrt{u}} \; \mathrm{d}u = \left[\frac{\mathrm{e}^{iu}}{i\sqrt{u}}\right]_{2\pi}^{x^2} - \int_{2\pi}^{x^2} \frac{-\mathrm{e}^{iu}}{2iu^{3/2}} \; \mathrm{d}u = -\frac{i}{x}\mathrm{e}^{ix^2} + \frac{i}{\sqrt{2\pi}} - \frac{i}{2}\int_{2\pi}^{x^2} \frac{\mathrm{e}^{iu}}{u^{3/2}} \; \mathrm{d}u.$$

D'une part, $0 \le \left| -\frac{i}{x} \mathrm{e}^{ix^2} \right| = \frac{1}{x}$, d'où $-\frac{i}{x} \mathrm{e}^{ix^2} \xrightarrow[x \to +\infty]{} 0$ d'après la théorème des gendarmes. D'autre part, $\left| \frac{\mathrm{e}^{iu}}{u^{3/2}} \right| = \frac{1}{u^{3/2}}$ donc, par comparaison avec une intégrale de Riemann convergente sur $[2\pi; +\infty[$, l'intégrale $\int_{2\pi}^{+\infty} \frac{\mathrm{e}^{iu}}{u^{3/2}} \, \mathrm{d}u$ converge absolument. Donc $\int_{2\pi}^{x^2} \frac{\mathrm{e}^{iu}}{\sqrt{u}} \, \mathrm{d}u \xrightarrow[x \to +\infty]{} \frac{i}{2\sqrt{2\pi}} - \frac{i}{4} \int_{2\pi}^{+\infty} \frac{\mathrm{e}^{iu}}{u^{3/2}} \, \mathrm{d}u$.

- 2. D'un côté, l'intégrale $\int_{0}^{\sqrt{2\pi}} e^{it^2} dt$ n'est même pas impropre. De l'autre, le changement de variable $t = \sqrt{u}$ est C^1 et strictement monotone, donc l'intégrale impropre $\int_{\sqrt{2\pi}}^{+\infty} e^{it^2} dt$ est de même nature que $\frac{1}{2} \int_{2\pi}^{+\infty} \frac{e^{iu}}{\sqrt{u}} du$, c'est-à-dire convergente d'après la question précédente.
- 3. $e^{-x^2(t^2-i)} = e^{-x^2t^2} \cdot e^{-ix^2}$. D'une part, le réel $e^{-x^2t^2}$ est positif. D'autre part, le complexe e^{-ix^2} est de module 1. Donc $|e^{-x^2(t^2-i)}| = |e^{-x^2t^2}| \cdot |e^{-ix^2}| = e^{-x^2t^2}.$ Deplus, $|t^2 - i| = \sqrt{(t^2)^2 + (-1)^2} = \sqrt{t^4 + 1}.$
- 4. Soient $X = [0, +\infty[$ et $T = \mathbb{R} :$
 - pour tout $t \in T$, la fonction $x \mapsto f(x,t)$ est continue sur X;
 - pour tout $x \in X$, $t \mapsto f(x,t)$ est continue sur T;
 - soit $\varphi(t) = \frac{1}{\sqrt{1+t^4}}$. Pour tout $(x,t) \in X \times T$, $|f(x,t)| \le \varphi(t)$ d'après la q. précédente et l'intégrale $\int_T \varphi(t) dt$ converge $\operatorname{car} \varphi(t) \sim \frac{1}{t^2} \operatorname{et} \varphi(t) \sim \frac{1}{t^2}.$

la fonction g est continue sur $[0, +\infty[$. Donc

- 5. On va utiliser le théorème de la convergence dominée avec la même fonction $\varphi: t \mapsto \frac{1}{\sqrt{1+t^4}}$ Soient (u_n) une suite de réels tendant vers $+\infty$ et $\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ h_n(t) = |f(u_n, t)|$.
 - La suite des fonctions h_n converge simplement sur \mathbb{R} vers une fonction cpm car $h_n(t) \underset{n \to \infty}{\longrightarrow} h(t) = \begin{cases} 0 \text{ si } t \neq 0 \\ 1 \text{ si } t = 0 \end{cases}$
 - $\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ |h_n(t)| \leq \varphi(t)$ et l'intégrale $\int_{\mathbb{R}} \varphi(t) \, \mathrm{d}t$ converge.

Donc les fonctions h_n et h sont intégrables et on peut intervertir limite et intégrale : $\int_{\mathbb{R}} h_n(t) dt \xrightarrow{n \to \infty} \int h(t) dt$.

Autrement dit, $\lim_{n\to\infty}\int_{\mathbb{R}}|f(u_n,t)|\,\mathrm{d}t=0$. C'est vrai pour toute suite (u_n) tendant vers $+\infty$, donc $\lim_{x\to+\infty}\int_{\mathbb{D}}|f(x,t)|\,\mathrm{d}t=0$ d'après la caractérisation séquentielle de la limite.

 $\text{Enfin, } 0 \leq \left| \int_{\mathbb{R}} f(x,t) \, \mathrm{d}t \right| \leq \int_{\mathbb{R}} |f(x,t)| \, \mathrm{d}t, \, \mathrm{donc} \, \left| \quad \lim_{x \to +\infty} \int_{\mathbb{R}} f(x,t) \, \mathrm{d}t = 0 \quad \right| \, \mathrm{d'après \; le \; th\'eor\`eme \; des \; gendarmes.}$

- 6. Soient $b \ge a > 0$, X = [a, b] et $T = \mathbb{R}$.
 - Pour tout $t \in T$, la fonction $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur X
 - Pour tout $x \in X$, $\begin{cases} \text{la fonction } t \mapsto f(x,t) \text{ est } cpm \text{ et intégrable sur } T \\ \text{la fonction } t \mapsto \frac{\partial f}{\partial x}(x,t) = -2x \mathrm{e}^{-x^2 \left(t^2 i\right)} \text{ est } cpm \text{ sur } T \end{cases}$
 - Pour tout $(x,t) \in X \times T$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$, où $\varphi(t) = 2b \mathrm{e}^{-a^2t^2}$ et l'intégrale $\int_T \varphi(t) \, \mathrm{d}t$ converge car $\varphi(t) = 0$

La fonction g est donc de classe \mathcal{C}^1 sur [a,b]. Ceci est vrai pour tous réels $b \geq a > 0$, donc g est de classe \mathcal{C}^1 sur $]0,+\infty[$.

7. Le même théorème de dérivation sous le signe intégral conclut aussi que

$$\forall x > 0, \quad g'(x) = \int_{\mathbb{R}} \frac{\partial f}{\partial x}(x, t) \, \mathrm{d}t = -2x \int_{\mathbb{R}} e^{-x^2 (t^2 - i)} \mathrm{d}t$$

Donc, après le changement de variable u = xt qui est bien \mathcal{C}^1 et strictement monotone car x > 0:

$$\forall x > 0, \quad g'(x) = -2e^{ix^2} \int_{\mathbb{R}} e^{-u^2} du = -2\sqrt{\pi}e^{ix^2}.$$

8. (a) L'intégrale est impropre en $-\infty$ et en $+\infty$. Elle est convergente car $\frac{1}{t^2-\sqrt{2}t+1}$ $\sim \frac{1}{t^2-\sqrt{2}t+1}$. Et

$$\int_{-\infty}^{+\infty} \frac{1}{t^2 - \sqrt{2}t + 1} dt = \int_{-\infty}^{+\infty} \frac{1}{(t - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dt$$

$$= \int_{-\infty}^{+\infty} \frac{1}{u^2 + \left(\frac{1}{\sqrt{2}}\right)^2} du \quad \text{en posant le $CDV $u = t - \frac{\sqrt{2}}{2}$, qui est \mathcal{C}^1 et strictement monotone}$$

$$= \left[\sqrt{2}\operatorname{Arctan}(\sqrt{2}u)\right]_{-\infty}^{+\infty} = \pi\sqrt{2}$$

- (b) De même (par le changement de variable u=-t) : $\int_{-\infty}^{+\infty} \frac{1}{t^2+\sqrt{2}t+1} \, \mathrm{d}t = \int_{-\infty}^{+\infty} \frac{1}{u^2-\sqrt{2}u+1} \, \mathrm{d}u = \pi \sqrt{2}.$
- (c) (On se garde de calculer les intégrales $\int_{-\infty}^{+\infty} \frac{2t \sqrt{2}}{t^2 \sqrt{2}t + 1} dt$ et $\int_{-\infty}^{+\infty} \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} dt$ qui sont divergentes. On lève cette forme indéterminée :)

$$\begin{split} J &= \int_A^B \frac{2t - \sqrt{2}}{t^2 - \sqrt{2}t + 1} - \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} \ \mathrm{d}t \\ &= \left[\ln(t^2 - \sqrt{2}t + 1) - \ln(t^2 + \sqrt{2}t + 1) \right]_A^B \\ &= \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_A^B \end{split}$$

$$\int_{A}^{B} \left(\frac{2t - \sqrt{2}}{t^2 - \sqrt{2}t + 1} - \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} \right) dt = \left[\ln(t^2 - \sqrt{2}t + 1) - \ln(t^2 + \sqrt{2}t + 1) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1}\right) \right]_{A}^{B} = \left[\ln\left(\frac{t^2 - \sqrt{2}t + 1}$$

a pour limite 0 quand
$$A \to -\infty$$
 et $B \to +\infty$. Donc
$$\int_{-\infty}^{+\infty} \left(\frac{2t - \sqrt{2}}{t^2 - t\sqrt{2} + 1} - \frac{2t + \sqrt{2}}{t^2 + t\sqrt{2} + 1} \right) dt = 0.$$

9. Soient $x \le a > 0$. La fonction g' est continue sur le segment [a, x] d'après la q. 6. D'où

$$g(x) - g(a) = \int_{-\pi}^{x} g'(t) dt = -2\sqrt{\pi} (H(x) - H(a))$$

d'après la q. 7. Cette égalité passe à la limite $a \to 0$ car la fonction g est continue en 0 d'après la q. 4 et la fonction H est continue en 0 car elle est définie comme une primitive d'une fonction continue sur \mathbb{R} . D'où $g(x) - g(0) = 2\sqrt{\pi} \big(H(x) - H(0)\big)$. D'un côté H(0) = 0, de l'autre :

$$\begin{split} g(0) &= \int_{\mathbb{R}} \frac{\mathrm{d}t}{t^2 - i} \\ &= \frac{1 - i}{4} \times \left(\frac{\sqrt{2}}{2} \int_{\mathbb{R}} \frac{2t - \sqrt{2}}{t^2 - \sqrt{2}t + 1} - \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} \mathrm{d}t + i\pi\sqrt{2} + i\pi\sqrt{2} \right) \\ &= \frac{1 - i}{4} \times \left(0 + 2i\pi\sqrt{2} \right) = (1 + i)\frac{\pi\sqrt{2}}{2} \end{split}$$

Donc
$$g(x) = \frac{(1+i)\pi}{\sqrt{2}} - 2\sqrt{\pi} H(x).$$

10. L'égalité de la q. précédente passe à la limite $x \to +\infty$ d'après les q. 5 et 2. D'où $0 = \frac{1+i}{\sqrt{2}}\pi - 2\sqrt{\pi} \int_0^{+\infty} e^{it^2} dt$ et la

valeur des intégrales de Fresnel :
$$\int_0^{+\infty} \cos\left(t^2\right) dt = \int_0^{+\infty} \sin\left(t^2\right) dt = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$