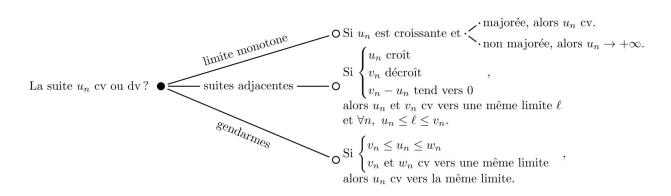
Chapitre I Séries numériques

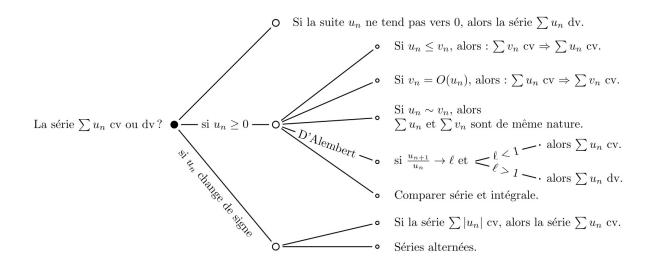
Table des matières

I.1	La nature d'une suite ou d'une série	1
I.2	Comparer série et intégrale	2
I.3	Le reste d'une série convergente	3
I.4	Les séries alternées	3
I.5	Le critère de d'Alembert	4
I.6	Sommer les \sim , o , O	5
I.7	Développements asymptotiques	6

I.1 La nature d'une suite ou d'une série

MÉTHODE 1 — Comment montrer qu'une suite ou une série converge ou diverge.





Exercice 2 — Les séries suivantes sont-elles convergentes ou divergentes?

$$1. \sum \frac{1}{n^2 + \sqrt{n}}$$

3.
$$\sum \frac{1}{n\cos^2(n)}$$

5.
$$\sum \frac{\sin n}{n^2}$$

$$2. \sum \frac{1}{n^2 - \sqrt{n}}$$

4.
$$\sum \frac{\ln n}{n^2}$$

I.2 Comparer série et intégrale

MÉTHODE 3 — Soit $f:[0,+\infty[\longrightarrow \mathbb{R} \ une\ fonction\ continue\ par\ morceaux\ et\ décroissante.$ Soit la suite $(u_k)_{k\in\mathbb{N}}$ définie pour chaque $k\in\mathbb{N}$ par : $u_k=f(k)$. Pour chaque $k\in\mathbb{N}$,

$$u_{k+1} \le \int_k^{k+1} f(t) \, dt \le u_k.$$

Preuve — Pour tout $t \in [k, k+1], \quad f(k+1) \le f(t) \le f(k)$. D'où (croissance de l'intégrale) :

$$u_{k+1} \le \int_{k}^{k+1} f(k+1) dt \le \int_{k}^{k+1} f(t) dt \le \int_{k}^{k+1} f(k) dt = u_k.$$

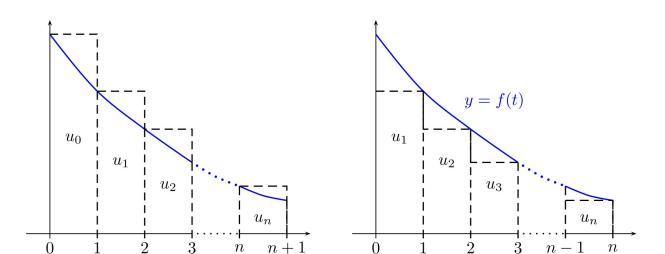


FIGURE I.1 – COMPARER UNE SÉRIE ET UNE INTÉGRALE

EXERCICE 4 (La série harmonique) — Soit
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$
.

Montrer que la série harmonique $\sum \frac{1}{n}$ diverge. Préciser ce résultat en démontrant que :

$$H_n \underset{n \to \infty}{\sim} \ln n$$
 et $H_n - \ln n \underset{n \to \infty}{\longrightarrow} \gamma$

 $où \gamma$ est un réel appelé la constante d'Euler. Autrement dit : $H_n = \ln n + o(\ln n) = \ln n + \gamma + o(1)$.

Exercice 5 — Montrer que : $\ln(n!) \sim n \ln(n)$.

Proposition 6 (Critère de Riemann)

Soit un réel α : la série $\sum \frac{1}{n^{\alpha}}$ converge si, et seulement si, $\alpha > 1$.

Preuve — On compare série et intégrale :

$$\int_1^{n+1} \frac{1}{t^{\alpha}} dt \le \underbrace{\sum_{k=1}^n \frac{1}{k^{\alpha}}}_{S_n} \le 1 + \int_1^n \frac{1}{t^{\alpha}} dt.$$

- Si $\alpha=1$, alors (comme dans l'exercice 4) $\ln(n+1) \leq S_n \leq 1 + \ln(n)$, d'où $\ln(n+1) \leq S_n$, or $\ln(n+1) \underset{n \to \infty}{\longrightarrow} +\infty$, donc S_n diverge.

$$\underbrace{\frac{1-\frac{1}{(n+1)^{\alpha-1}}}{\alpha-1}}_{A_n} \leq S_n \leq \underbrace{1+\frac{1-\frac{1}{n^{\alpha-1}}}{\alpha-1}}_{B_n}.$$

- Si $\alpha < 1$, alors $A_n \xrightarrow[n \to \infty]{} +\infty$, donc S_n
- Si $\alpha>1$, alors $\forall n\in\mathbb{N}^*,\ B_n\leq 1+\frac{1}{\alpha-1},$ d'où la suite S_n est majorée, or S_n est croissante (car $\frac{1}{n^{\alpha}}$ est positif), donc S_n converge.

LE RESTE D'UNE SÉRIE CONVERGENTE

Soit $S_n = \sum_{k=0}^n u_k$ la suite des sommes partielles d'une série $\sum_{k=0}^n u_k$. Si cette série converge, alors, pour chaque $n \in \mathbb{N}$, la quantité $R_n = \sum_{k=n+1}^{\infty} u_k$ est définie et $\forall n \in \mathbb{N}$, $S_n + R_n = \sum_{k=n+1}^{\infty} u_k$.

Pour chaque $n \in \mathbb{N}$, la somme partielle S_n est une valeur approchée de la somme exacte $\ell = \sum_{k=0}^n u_k$. Et $|R_n| = |\ell - S_n|$ est l'erreur. Cette erreur tend vers zéro car $\lim_{n \to \infty} R_n = \ell - \lim_{n \to \infty} S_n = \ell - \ell = 0$.

EXERCICE 7 — Soit, pour chaque $n \in \mathbb{N}^*$, le reste $R_n = \sum_{k=n+1}^{\infty} \frac{1}{k^2}$ de la série convergente $\sum \frac{1}{n^2}$. En comparant série et intégrale, montrer que : $\frac{1}{n+1} \leq R_n \leq \frac{1}{n}$. En déduire un équivalent de R_n .

T.4 LES SÉRIES ALTERNÉES

THÉORÈME 8 (Théorème des séries alternées)

Si une suite (u_n) tend vers zéro en décroissant à partir d'un certain rang n_0 , alors :

- 1. la série $\sum (-1)^n u_n$ est convergente ; 2. la somme $\ell = \sum_{k=n_0}^{\infty} (-1)^k u_k$ a le même signe que son premier terme $(-1)^{n_0} u_{n_0}$ et est encadrée par

deux sommes partielles consécutives $S_n = \sum_{k=n_0}^n (-1)^k u_k$ et S_{n+1} pour chaque $n \geq n_0$;

3. pour chaque $n \geq n_0$, le reste $R_n = \sum_{k=n+1}^\infty (-1)^k u_k$ a le même signe que le premier terme négligé $(-1)^{n+1}u_{n+1}$ et $|R_n| \leq u_{n+1}$.

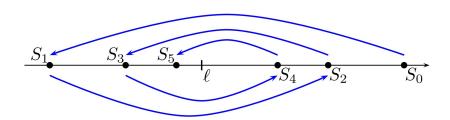


FIGURE I.2 – LA CONVERGENCE D'UNE SÉRIE ALTERNÉE

EXERCICE 9 — On pose, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$. Montrer $que \ln 2 - S_n = \int_0^1 \frac{(-t)^n}{1+t} dt. \text{ \'etudier la limite de } S_n, \text{ justifier l'existence de } R_n = \sum_{k=n+1}^\infty \frac{(-1)^{k-1}}{k} \text{ et }$ déterminer la nature de la série $\sum R_n$.

Le critère de d'Alembert

Théorème 10 (Critère de d'Alembert)

Soit (u_n) une suite strictement positive telle que

$$\lim \frac{u_{n+1}}{u_n} = \ell.$$

- 1. Si $\ell < 1$, alors la série $\sum u_n$ converge. 2. Si $\ell > 1$, alors la série $\sum u_n$ diverge.

Preuve — On va comparer la série $\sum u_n$ à une série géométrique $\sum \lambda^n$:

1. Si $\frac{u_{n+1}}{u_n} \underset{n \to \infty}{\longrightarrow} \ell < 1$, alors il existe un réel $\lambda < 1$ tel que : $\frac{u_{n+1}}{u_n} \le \lambda$ à partir d'un certain rang N.

D'où, pour tout n > N:

$$u_n = u_N \times \underbrace{\frac{u_{N+1}}{u_N} \times \dots \times \frac{u_n}{u_{n-1}}}_{\leq \lambda^{n-N}}$$

$$< u_N \lambda^{-N} \cdot \lambda^n.$$

Or la série $\sum \lambda^n$ converge car $\lambda < 1$. D'où la série $u_N \lambda^{-N} \sum \lambda^n$ converge, donc la série $\sum u_n$ converge aussi. 2. De même, si $\frac{u_{n+1}}{u_n} \underset{n \to \infty}{\longrightarrow} \ell > 1$, alors il existe un réel $\lambda > 1$ tel que : $\frac{u_{n+1}}{u_n} \ge \lambda$ à partir d'un certain rang N.

D'où, pour tout $n \ge N$, $u_n \ge u_N \lambda^{-N} \cdot \lambda^n$. Or la série $\sum \lambda^n$ diverge car $\lambda > 1$. Donc la série $\sum u_n$ diverge aussi.

Remarque 11 — Si $\ell = 1$, alors le critère ne permet pas de conclure (en effet $\sum \frac{1}{n}$ diverge tandis que $\sum \frac{1}{n^2}$ converge).

Exercice 12 — Pour quelles valeurs du réel a les séries

$$\sum \frac{a^n}{n!}$$
 et $\sum \frac{a^n}{n}$

convergent-elles?

Sommer les \sim , o, O I.6

Soient (u_n) et (v_n) deux suites. On suppose que la suite (v_n) est positive.

- 1. Si $\sum v_n$ converge et $u_n = O(v_n)$, alors $\sum u_n$ converge absolument et $\sum_{p=n+1}^{+\infty} u_p = O\left(\sum_{p=n+1}^{+\infty} v_p\right)$. 2. Si $\sum v_n$ diverge et $u_n = O(v_n)$, alors $\sum_{p=0}^n u_p = O\left(\sum_{p=0}^n v_p\right)$.

 - 3. De même en remplaçant O par o ou par \sim

Preuve -

1. Si $u_n = O(v_n)$ alors il existe un rang n_0 et une constante K tels que $\forall n \geq n_0, |u_n| \leq K|v_n|$. De plus, la suite (v_n) est positive, d'où $|u_n| \leq Kv_n$. Or la série $\sum v_n$ converge, d'où $\sum |u_n|$ converge aussi, donc la série $\sum u_n$ converge absolument. Les restes

$$\widehat{U}_n = \sum_{p=n+1}^{+\infty} u_p$$
 et $\widehat{V}_n = \sum_{p=n+1}^{+\infty} v_p$

sont donc définis. De $|u_n| \leq Kv_n$, on déduit que $\left|\widehat{U}_n\right| \leq \sum_{p=n+1}^{+\infty} |u_p| \leq K\widehat{V}_n$ à partir du rang n_0 , donc $\widehat{U}_n = O(\widehat{V}_n)$.

2. On utilise le même n_0 et on note les sommes partielles $U_n = \sum_{p=0}^n u_p$ et $V_n = \sum_{p=0}^n v_p$. La suite V_n tend vers $+\infty$, d'où il existe un rang $n_1 \ge n_0$ tel que $\forall n \ge n_1, |U_{n_0}| \le KV_n$

D'où $\forall n \geq n_1, \ |U_n| = |U_{n_0} + (U_n - U_{n_0})| \leq |U_{n_0}| + |U_n - U_{n_0}| \leq |U_{n_0}| + K(V_n - V_{n_0}) \leq 2KV_n$. Donc $U_n = O(V_n)$. 3. Si $u_n = o(v_n)$, alors on remplace la constante K ci-dessus par ε , pour tout $\varepsilon > 0$.

On remarque que $u_n \sim v_n \iff u_n - v_n = o(v_n)$ et on utilise la propriété déjà démontrée pour les o

Le théorème suivant est juste un cas particulier du lemme précédent :

Théorème 14

Soient (u_n) et (v_n) deux suites positives et équivalentes :

- ou bien leurs séries **divergent** et leurs **sommes partielles** sont équivalentes ;
- ou bien leurs séries **convergent** et leurs **restes** sont équivalents.

Exercice 15 —

- 1. Montrer, en appliquant le théorème aux deux suites $u_n = \frac{1}{n^2}$ et $v_n = \frac{1}{n-1} \frac{1}{n}$, que la série $\sum \frac{1}{n^2}$ converge et que son reste est équivalent à $\frac{1}{n}$. (On avait déjà obtenu ces résultats à l'exercice 7 en comparant série et intégrale.)
- 2. Montrer, en appliquant le théorème aux deux suites $u_n = \frac{1}{n}$ et $v_n = \ln(n) \ln(n-1)$, que la série $\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverge et que ses sommes partielles sont équivalentes à <math>\ln(n)$. (On a déjà obtenu ces résultats à l'exercice 4 en comparant série et intégrale.)

COROLLAIRE 16 (Lemme de Cesàro)

Si une suite (u_n) converge vers un réel ℓ , alors elle converge en moyenne vers ℓ :

$$u_n \underset{n \to \infty}{\longrightarrow} \ell \implies \frac{u_0 + u_1 + \dots + u_n}{n+1} \underset{n \to \infty}{\longrightarrow} \ell.$$

Preuve — Dans le cas particulier où $\ell=0$: $u_n=\mathop{o}_{n\to\infty}(1)$, or 1 est positif et la série $\sum 1$ diverge, d'où la somme partielle $u_0+u_1+\cdots+u_n=S_n$ est un o de la somme partielle $1+1+\cdots+1=n+1$. Donc la moyenne $\frac{S_n}{n+1}$ tend vers 0 qui est égal à ℓ .

Le cas général se ramène au cas particulier, appliqué à la suite $u_n - \ell$.

Exercice 17 — La réciproque du lemme de Cesàro est-elle vraie ? Montrer que le lemme de Cesàro reste vrai si ℓ vaut $+\infty$ ou $-\infty$.

I.7 DÉVELOPPEMENTS ASYMPTOTIQUES

Nous savons que la série harmonique $\sum \frac{1}{n}$ est divergente et nous connaissons (exercice 4) un équivalent de ses sommes partielles :

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \sim \ln n.$$

Nous allons préciser ce résultat en démontrant les formules suivantes :

$$H_n = \ln n + o(\ln n) \tag{1}$$

$$= \ln n + \gamma + o(1) \tag{2}$$

$$= \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right) \tag{3}$$

$$= \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right) \tag{4}$$

où γ est un réel appelé la constante d'Euler.

Ces formules sont des exemples de **développements asymptotiques**, chaque développement étant plus poussé, donc plus précis, que le précédent. Pour obtenir ces développements, on utilise le théorème 14 et la remarque suivante.

Remarque 18 (Séries télescopiques) — À une suite (u_n) , on associe sa série télescopique $\sum (u_n - u_{n-1})$:

- la somme partielle $\sum_{k=1}^{n} (u_k u_{k-1})$ de la série télescopique est égale à $u_n u_0$ (et, par conséquent, la suite et sa série télescopique ont toujours la même nature);
- si u_n tend vers zéro, alors le reste $\sum_{k=n+1}^{\infty} (u_k u_{k-1})$ de la série télescopique est égal à $-u_n$.

Preuve — Soit
$$n \ge 1$$
: $S_n = \sum_{p=1}^n (u_p - u_{p-1}) = u_n - u_0$ (télescope) et

$$R_n = \sum_{p=n+1}^{\infty} (u_p - u_{p-1}) = \lim_{N \to \infty} \sum_{p=n+1}^{N} (u_p - u_{p-1}) = \lim_{N \to \infty} (u_N - u_n) = -u_n \text{ si } \lim_{N \to \infty} u_N = 0.$$

(1) La première formule est juste une réécriture de \sim avec un o:

$$H_n \sim \ln n \iff H_n = \ln n + o(\ln n)$$
.

(2) Nous avons déjà montré (exercice 4) que la suite $H_n - \ln n$ converge. Voici une autre preuve, utilisant la série télescopique : la suite $u_n = H_n - \ln n$ a la même nature que la série $\sum (u_n - u_{n-1})$. Or

$$u_n - u_{n-1} = [H_n - \ln n] - [H_{n-1} - \ln(n-1)] = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n} + \left[-\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right] = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \sim -\frac{1}{2n^2}.$$

La série $\sum \frac{1}{n^2}$ converge, d'où la série $\sum (u_n - u_{n-1})$ converge aussi, donc la suite u_n converge. Soit γ sa limite :

$$H_n - \ln(n) \longrightarrow \gamma \iff H_n = \ln n + \gamma + o(1).$$

(3) Soit $u_n = H_n - \ln n - \gamma$. La série $\sum (u_n - u_{n-1})$ converge car $u_n - u_{n-1} \sim -\frac{1}{2n^2}$, on en déduit l'équivalence des restes :

$$R_n \sim -\frac{1}{2} \cdot \sum_{p=n+1}^{\infty} \frac{1}{p^2} \sim -\frac{1}{2} \cdot \frac{1}{n}$$
 (par comparaison série-intégrale), d'où $u_n \sim \frac{1}{2n}$:

$$H_n - \ln n - \gamma \sim \frac{1}{2n} \iff H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

(4) On cherche un équivalent de $u_n = H_n - \ln n - \gamma - \frac{1}{2n}$. La série $\sum (u_n - u_{n-1})$ est convergente car :

$$u_n - u_{n-1} = \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)$$
 (calculer le D.L.)
 $\sim \frac{1}{6n^3}$, d'où (par équivalence des restes)
 $R_n \sim \frac{1}{6} \cdot \sum_{p=n+1}^{\infty} \frac{1}{p^3}$
 $\sim \frac{1}{6} \cdot \frac{1}{2n^2}$ (comparer série et intégrale).

$$\mbox{D'où} \quad u_n \sim -\frac{1}{12n^2}, \quad \mbox{donc} \quad H_n - \ln n - \gamma - \frac{1}{2n} \sim -\frac{1}{12n^2}.$$

Proposition 19 (Formule de Stirling)

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

Preuve — On part de l'équivalent $\ln(n!) \sim n \ln n$ prouvé à l'exercice 5 puis on pousse le développement asymptotique : $\ln(n!) = n \ln n - n + \frac{1}{2} \ln n + K + \frac{1}{12n} + o\left(\frac{1}{n}\right)$. Pour déterminer la constante K, on utilise les intégrales de Wallis. \square

EXERCICE 20 — On lance 2n fois une pièce. Quelle est la probabilité u_n d'obtenir autant de Pile que de Face? Déterminer un équivalent de u_n quand n tend vers l'infini.