LYCÉE CLEMENCEAU – NANTES

Séries numériques

31 août 2025

Exercice 1.

Les séries suivantes sont-elles convergentes ou divergentes?

1.
$$\sum \sin\left(\frac{1}{n}\right)$$

6.
$$\sum \frac{1}{\ln(n!)}$$

$$2. \sum \frac{1}{n \cdot n^{1/n}}$$

7.
$$\sum e^{-\sqrt{\ln n}}$$

3.
$$\sum \left(\frac{n}{n+1}\right)^n$$

6.
$$\sum \frac{1}{\ln(n!)}$$
7.
$$\sum e^{-\sqrt{\ln n}}$$
8.
$$\sum \frac{n}{(\ln n)^n}$$

3.
$$\sum \left(\frac{n+1}{n+1}\right)$$

9.
$$\sum \left(\frac{1}{n} - 1\right)^n$$

4.
$$\sum \frac{n^{100}}{e^n}$$

10.
$$\sum \left(n \sin \frac{1}{n}\right)^n$$

5.
$$\sum \frac{1}{n \ln(n)}$$

11.
$$\sum \sin(\pi \sqrt{n^2+1})$$

Exercice 2 (Discuter suivant les valeurs d'un paramètre).

Pour quelles valeurs du réel a la série $\sum \frac{a^n}{n+a^{2n}}$ est-elle convergente?

Exercice 3 (Séries géométriques).

1. Calculer
$$\int_0^1 t^{2k} dt$$
 et $\sum_{k=0}^n (-1)^k t^{2k}$.

- 2. Montrer que la série $\sum \frac{(-1)^k}{2k+1}$ converge et montrer que $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.
- 3. De même, après avoir décomposé en éléments simples la fraction rationnelle $\frac{1}{(4x+1)(4x+3)}$, montrer que la série $\sum \frac{1}{(4n+1)(4n+3)}$ converge et que $\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)} = \frac{\pi}{8}$.

Exercice 4 (Télescope et D.L.).

1. Montrer que la série $\sum \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right)$ converge et calculer sa

$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right).$$

2. Soit $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$. Montrer qu'il existe des réels a et buniques tels que la série $\sum u_n$ soit convergente. Calculer alors sa somme $\sum_{n=0}^{\infty} u_n.$

Exercice 5 (Discuter suivant les valeurs d'un paramètre).

Pour quelles valeurs du réel $a \neq 0$ la série $\sum \frac{(-1)^n}{n^a + (-1)^n}$ est-elle convergente?

Exercice 6 (Convergence non absolue).

Soit une suite $(u_n)_{n\in\mathbb{N}}$ telle que la série $\sum u_n$ converge mais la série $\sum |u_n|$ diverge. Soient P_n et M_n les suites définies par :

$$\forall n \in \mathbb{N}, \quad P_n = \max(0, u_n) \quad \text{et} \quad M_n = \min(0, u_n).$$

Montrer que les séries $\sum P_n$ et $\sum M_n$ divergent.

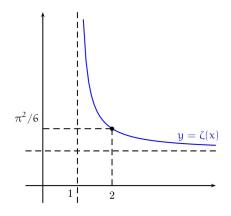


FIGURE 1 – LA FONCTION ζ DE RIEMANN.

Exercice 7 (La fonction zêta de Riemann).

1. Soit

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Montrer que l'ensemble de définition de la fonction ζ est l'intervalle $I =]1, +\infty[$.

- 2. Montrer que la fonction ζ est décroissante sur l'intervalle I.
- 3. Montrer que, pour tout $x \in I$, $1 + \frac{1}{(x-1)2^{x-1}} \le \zeta(x) \le 1 + \frac{1}{x-1}$.
- 4. Etudier $\lim_{x \to +\infty} \zeta(x)$ et $\lim_{x \to 1^+} \zeta(x)$. Proposer un équivalent de $\zeta(x)$ quand x tend vers 1^+ .

Exercice 8 (Série télescopique, comparaison série-intégrale & théorème de sommation des équivalents).

Soit la suite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par

$$u_n = \frac{1}{2n+1} + \frac{1}{2n+3} + \dots + \frac{1}{4n-1} = \sum_{k=n}^{2n-1} \frac{1}{2k+1}.$$

- 1. Montrer que $u_{n+1} u_n \sim \frac{1}{32n^3}$. En déduire que la suite (u_n) converge.
- 2. Montrer que sa limite vaut $\ell = \frac{\ln(2)}{2}$.
- 3. Montrer que $\ell u_n \sim \frac{1}{64n^2}$.

Exercice 9 (Série télescopique & théorème de sommation des équivalents).

Soit la suite définie par $u_0 \in]0,1]$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sin u_n$.

- 1. Montrer que la suite (u_n) est convergente et que sa limite est nulle.
- 2. Étudier la limite de $\frac{u_{n+1}-u_n}{u_n^3}$. En déduire la nature de la série de terme général u_n^3 .
- 3. En étudiant $\ln(\frac{u_{n+1}}{u_n})$, montrer que la série de terme général u_n^2 diverge.
- 4. À l'aide d'un D.L., déterminer un réel α tel que $u_{n+1}^{\alpha} u_n^{\alpha}$ converge vers une limite non nulle. En déduire un équivalent de u_n .

Exercice 10 (Formule de Stirling).

Montrer que la série $\sum (-1)^n \ln \left(1+\frac{1}{n}\right)$ est convergente et que, pour tout $p \in \mathbb{N}$, $\sum_{n=1}^{2p+1} (-1)^n \ln \left(1+\frac{1}{n}\right) = 2 \ln u_p$, où $u_p = \frac{(2p+1)!}{2^{2p}p!^2\sqrt{2p+2}}$. En utilisant la formule de Stirling, déterminer un équivalent de u_p et en déduire que $\sum_{n=1}^{\infty} (-1)^n \ln \left(1+\frac{1}{n}\right) = \ln 2 - \ln \pi$.

Et aussi: les exercices 2 & 3 du test 2024-2025 / tout le DS nº 1 2024-2025.