CORRIGÉ DU T.D. Nº 1

Suites & séries numériques

4 septembre 2025

Exercice 1. Les séries suivantes sont-elles convergentes ou divergentes?

1.
$$\sum \sin\left(\frac{1}{n}\right)$$
2.
$$\sum \frac{1}{n \cdot n^{1/n}}$$
3.
$$\sum \left(\frac{n}{n+1}\right)^n$$
4.
$$\sum \frac{n^{100}}{e^n}$$
5.
$$\sum \frac{1}{n \ln(n)}$$
6.
$$\sum \frac{1}{\ln(n!)}$$
7.
$$\sum e^{-\sqrt{\ln n}}$$
8.
$$\sum \frac{n}{(\ln n)^n}$$
9.
$$\sum \left(\frac{1}{n}-1\right)^n$$
10.
$$\sum \left(n \sin \frac{1}{n}\right)^n$$
11.
$$\sum \sin(\pi \sqrt{n^2+1})$$

Exercice 2 (*Discuter suivant les valeurs d'un paramètre*). Pour quelles valeurs du réel a la série $\sum \frac{a^n}{n+a^{2n}}$ est-elle convergente?

Soit, pour tout $n \in \mathbb{N}$, $u_n = \frac{a^n}{n + a^{2n}}$. On disjoint les cas :

- si |a| > 1, alors $|u_n| \sim \frac{|a|^n}{a^{2n}} \sim \left(\frac{1}{|a|}\right)^n$. Or la série géométrique $\sum \left(\frac{1}{|a|}\right)^n$ converge, donc la série $\sum u_n$ converge absolument.
- si |a| < 1, alors $|u_n| \sim \frac{|a|^n}{n} \le |a|^n$. Or la série géométrique $\sum |a|^n$ converge, donc la série $\sum u_n$ converge absolument. si a = 1, alors $u_n = \frac{1}{n+1}$ et la série harmonique $\sum \frac{1}{n+1}$ diverge.
- si a=-1, alors $u_n=\frac{(-1)^n}{n+1}$ et la série harmonique alternée $\sum \frac{(-1)^n}{n+1}$ converge.

1. Calculer $\int_0^1 t^{2k} dt$ et $\sum_{k=0}^n (-1)^k t^{2k}$. Exercice 3 (Séries géométriques).

- 2. Montrer que la série $\sum \frac{(-1)^k}{2k+1}$ converge et montrer que $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.
- 3. De même, après avoir décomposé en éléments simples la fraction rationnelle $\frac{1}{(4r+1)(4r+3)}$, montrer que la série $\sum \frac{1}{(4n+1)(4n+3)}$ converge et que $\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)} = \frac{\pi}{8}$.

1.
$$\int_0^1 t^{2k} dt = \left[\frac{t^{2k+1}}{2k+1} \right]_0^1 = \frac{1}{2k+1}$$
 et, en reconnaissant une somme géométrique :

$$\sum_{k=0}^{n} (-1)^k t^{2k} = \sum_{k=0}^{n} (-t^2)^k = \frac{1-(-t^2)^{n+1}}{1-(-t^2)} = \frac{1+(-1)^n t^{2n+2}}{1+t^2}.$$

2. On peut affirmer, grâce au théorème des séries alternées, que la série $\sum \frac{(-1)^k}{2k+1}$ converge car la suite $\frac{1}{2k+1}$ tend vers zéro en décroissant. (Mais cela ne donne pas la valeur de la limite.) Autre méthode, on calcule la somme partielle $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$ grâce à la question précédente : $S_n = \sum_{k=0}^n (-1)^k \int_0^1 t^{2k} dt = \int_0^1 \left(\sum_{k=0}^n (-1)^k t^{2k}\right) dt$ par linéarité de l'intégrale. D'où

$$S_n = \int_0^1 \frac{1 + (-1)^n t^{2n+2}}{1 + t^2} dt = \int_0^1 \frac{1}{1 + t^2} dt + (-1)^n \int_0^1 \frac{t^{2n+2}}{1 + t^2} dt.$$

Puis on montre que la dernière intégrale tend vers 0 quand n tend vers ∞ :

$$\forall t \in [0,1], 0 \le \frac{t^{2n+2}}{1+t^2} \le t^{2n+2}, \text{ d'où } 0 \le \int_0^1 \frac{t^{2n+2}}{1+t^2} dt \le \frac{1}{2n+3} \text{ par croissance de l'intégrale.}$$

D'après le théorème des gendarmes, quand n tend vers l'infini, la suite des réels $\int_0^1 \frac{t^{2n+2}}{1+t^2} dt$ tend vers zéro et aussi le produit $(-1)^n \int_0^1 \frac{t^{2n+2}}{1+t^2} dt$ car la suite des réels $(-1)^n$ est bornée.

D'où la suite des réels
$$S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$
 tend vers $\int_0^1 \frac{1}{1+t^2} = \left[\arctan t\right]_0^1 = \frac{\pi}{4}$.

Donc la série
$$\sum \frac{(-1)^k}{2k+1}$$
 converge et sa somme vaut $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.

- 3. $\frac{1}{(4n+1)(4n+3)} \sim \frac{1}{16n^2}$ d'où (par comparaison de séries à termes positifs) la série $\sum \frac{1}{(4n+1)(4n+3)}$ converge.
- 4. On commence par décomposer la fraction. On cherche α et β tels que :

$$\forall x \in \mathbb{R} \setminus \left\{ -\frac{1}{4}, -\frac{3}{4} \right\}, \quad \frac{1}{(4x+1)(4x+3)} = \frac{\alpha}{4x+1} + \frac{\beta}{4x+3}$$

En multipliant l'égalité par 4x + 1 et en prenant $x = -\frac{1}{4}$, on trouve $\alpha = \frac{1}{2}$. De même, en multipliant l'égalité par 4x + 3 et en prenant $x = -\frac{3}{4}$, on trouve $\beta = -\frac{1}{2}$.

Pour calculer la somme de la série, on étudie la limite des sommes partielles :

$$\begin{split} \sum_{k=0}^{n} \frac{1}{(4k+1)(4k+3)} &= & \frac{1}{2} \sum_{k=0}^{n} \left(\frac{1}{4k+1} - \frac{1}{4k+3} \right) \\ &= & \frac{1}{2} \sum_{k=0}^{n} \int_{0}^{1} \left(x^{4k} - x^{4k+2} \right) dx \\ &= & \frac{1}{2} \int_{0}^{1} (1 - x^{2}) \sum_{k=0}^{n} (x^{4})^{k} dx. \end{split}$$

Or $(1-x^2)\sum_{k=0}^{n}(x^4)^k=(1-x^2)\frac{1-x^{4n+4}}{1-x^4}$ pour tout $x\in[0,1[$. D'où $(1-x^2)\sum_{k=0}^{n}(x^4)^k=\frac{1-x^{4n+4}}{1+x^2}$ et on constate que cette formule reste vraie si x=1. D'où

$$\sum_{k=0}^{n} \frac{1}{(4k+1)(4k+3)} = \frac{1}{2} \int_{0}^{1} \frac{1}{1+x^{2}} dx - \frac{1}{2} \int_{0}^{1} \frac{x^{4n+4}}{1+x^{2}} dx.$$

Or
$$0 \le \frac{1}{2} \int_0^1 \frac{x^{4n+4}}{1+x^2} dx \le \frac{1}{2} \int_0^1 x^{4n+4} dx \le \frac{1}{2(4n+5)} \underset{n \to +\infty}{\longrightarrow} 0.$$

$$\mathrm{D'où} \sum_{k=0}^{+\infty} \frac{1}{(4k+1)(4k+3)} = \frac{1}{2} \int_0^1 \frac{1}{1+x^2} dx = \frac{1}{2} [\arctan(1) - \arctan(0)] = \frac{\pi}{8}.$$

Exercice 4 (*Télescope et D.L.*). 1. Montrer que la série $\sum \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right)$ converge et calculer sa somme

$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right).$$

2. Soit $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$. Montrer qu'il existe des réels a et b uniques tels que la série $\sum u_n$ soit convergente. Calculer alors sa somme $\sum_{n=0}^{\infty} u_n$.

1. Première méthode: avec un DL de la suite, on va trouver la nature mais pas la somme de la série. Les trois termes de la somme $\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}$ ont pour terme dominant $\frac{1}{\sqrt{n}}$, qu'on met en facteur pour calculer un D.L.:

$$\frac{1}{\sqrt{n-1}} = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{1-\frac{1}{n}}} = \frac{1}{\sqrt{n}} \cdot (1+u)^{\alpha} \text{ avec } u = -\frac{1}{n} \to 0 \text{ et } \alpha = -\frac{1}{2}.$$

D'où
$$\frac{1}{\sqrt{n-1}} = \frac{1}{\sqrt{n}} \cdot \left(1 + \frac{1}{2n} + \frac{3}{8n^2} + \frac{1}{n^2} \varepsilon_n\right) = \frac{1}{\sqrt{n}} + \frac{1}{2n\sqrt{n}} + \frac{3}{8n^2\sqrt{n}} + \frac{1}{n^2\sqrt{n}} \varepsilon_n.$$

De même,
$$\frac{1}{\sqrt{n+1}} = \frac{1}{\sqrt{n}} \cdot \left(1 - \frac{1}{2n} + \frac{3}{8n^2} + \frac{1}{n^2} \varepsilon_n\right) = \frac{1}{\sqrt{n}} - \frac{1}{2n\sqrt{n}} + \frac{3}{8n^2\sqrt{n}} + \frac{1}{n^2\sqrt{n}} \varepsilon_n$$
.

Donc $\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} = \frac{3}{4n^2\sqrt{n}} + \frac{1}{n^2\sqrt{n}}\varepsilon_n \sim \frac{3}{4n^{5/2}}$ qui ne chgange pas de signe. D'où la série $\sum \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right)$ est de même nature que la série de Riemann $\sum \frac{1}{n^{5/2}}$, donc convergente.

2. D'abord, avec un DL, on détermine la nature de la série : $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} = \sqrt{n} + a\sqrt{n}\sqrt{1+\frac{1}{n}} + b\sqrt{n}\sqrt{1+\frac{2}{n}} = \sqrt{n} + a\sqrt{n}\sqrt{1+\frac{1}{n}} + a\sqrt{n}\sqrt{1+\frac{2}{n}} = \sqrt{n} + a\sqrt{n}\sqrt{1+\frac{1}{n}} + a\sqrt{n}\sqrt{1+\frac{2}{n}} = \sqrt{n} + a\sqrt{n}\sqrt{1+\frac{2}{n}} = \sqrt{n}\sqrt{1+\frac{2}{n}} = \sqrt{n}\sqrt{$ $a\sqrt{n}\left(1+\frac{1}{2n}-\frac{1}{8n^2}+\frac{1}{n^2}\varepsilon_n\right)+b\sqrt{n}\left(1+\frac{1}{n}-\frac{1}{2n^2}+\frac{1}{n^2}\varepsilon_n\right).$

On ordonne les termes :
$$u_n = (1+a+b)\sqrt{n} + \left(\frac{a}{2}+b\right)\frac{1}{\sqrt{n}} - \left(\frac{a}{8}+\frac{b}{2}\right)\frac{1}{n^{3/2}} + \frac{1}{n^{3/2}}\varepsilon_n$$

On discute:

- si $1+a+b\neq 0$, alors $u_n\sim (1+a+b)\sqrt{n}$ qui ne change pas de signe, or la série $\sum \sqrt{n}$ diverge grossièrement, donc la série $\sum u_n$ aussi; si a+b=-1 et $\frac{a}{2}+b\neq 0$, alors $u_n\sim \left(\frac{a}{2}+b\right)\frac{1}{\sqrt{n}}$ qui ne change pas de signe, or la série $\sum \frac{1}{\sqrt{n}}$ diverge (Riemann avec $\alpha=\frac{1}{2}$), donc la
- si a+b=-1 et $b=-\frac{a}{2}$, alors a=-2 et b=1, d'où $u_n\sim -(\frac{-2}{8}+\frac{1}{2})\frac{1}{n^{3/2}}$ qui ne change pas de signe, or la série $\sum \frac{1}{n^{3/2}}$ est une série de Riemann convergente, donc la série $\sum u_n$ converge.

Finalement : la série converge si, et seulement si, a = -2 et b = 1.

Ensuite, grâce à un télescope, on calcule la somme de la série, dans le cas où elle converge : pour tout $N \ge 0$, $\sum_{n=0}^{N} u_n = \left(\sqrt{0} - 2\sqrt{1} + \sqrt{2}\right) + \left(\sqrt{1} - 2\sqrt{2} + \sqrt{3}\right) + \left(\sqrt{2} - 2\sqrt{3} + \sqrt{4}\right) + \dots + \left(\sqrt{N} - 2\sqrt{N+1} + \sqrt{N+2}\right) = -1 - \sqrt{N+1} + \sqrt{N+2}$. Or $\sqrt{N+2} - \sqrt{N+1} = \frac{1}{\sqrt{N+2} + \sqrt{N+1}} \to 0$. Donc $\sum_{n=0}^{\infty} u_n = -1$.

Exercice 5 (Discuter suivant les valeurs d'un paramètre). Pour quelles valeurs du réel $a \neq 0$ la série $\sum \frac{(-1)^n}{n^a + (-1)^n}$ est-elle convergente?

Soit $u_n = \frac{(-1)^n}{n^a + (-1)^n}$. Si a < 0, alors la suite u_n ne tend pas vers zéro, donc la série $\sum u_n$ diverge.

$$u_n = \frac{(-1)^n}{n^a + (-1)^n} = \frac{(-1)^n}{n^a} - \frac{1}{n^{2a}}(1 + \varepsilon_n).$$

Or la série $\sum \frac{(-1)^n}{n^a}$ converge d'après le TSA car la suite $\frac{1}{n^a}$ tend vers zéro en décroissant. Et les séries $\sum \frac{1}{n^{2a}}(1+\varepsilon_n)$ et $\sum \frac{1}{n^{2a}}$ sont de même nature car $\frac{1}{n^2a}$ ne change pas de signe, donc convergent si, et seulement si, 2a > 1.

Donc la série $\sum u_n$ converge si, et seulement si, $a > \frac{1}{2}$.

Exercice 6 (*Convergence non absolue*). Soit une suite $(u_n)_{n\in\mathbb{N}}$ telle que la série $\sum u_n$ converge mais la série $\sum |u_n|$ diverge. Soient P_n et M_n les suites définies par :

$$\forall n \in \mathbb{N}, P_n = \max(0, u_n)$$
 et $M_n = \min(0, u_n)$.

Montrer que les séries $\sum P_n$ et $\sum M_n$ divergent.

Pour chaque $n \in \mathbb{N}$, $u_n = P_n + M_n$. Or la série $\sum u_n$ converge, d'où les séries $\sum P_n$ et $\sum M_n$ sont de même nature.

Pour chaque $n \in \mathbb{N}$, $|u_n| = P_n - M_n$. Or la série $\sum |u_n|$ diverge, d'où les séries $\sum P_n$ et $\sum M_n$ divergent.

Exercice 7 (La fonction zêta de Riemann).

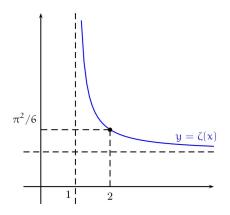


FIGURE 1 – LA FONCTION ζ DE RIEMANN.

1. Soit

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Montrer que l'ensemble de définition de la fonction ζ est l'intervalle $I =]1, +\infty[$.

- 2. Montrer que la fonction ζ est décroissante sur l'intervalle I.
- 3. Montrer que, pour tout $x \in I$, $1 + \frac{1}{(x-1)2^{x-1}} \le \zeta(x) \le 1 + \frac{1}{x-1}$.
- 4. Etudier $\lim_{x \to +\infty} \zeta(x)$ et $\lim_{x \to 1^+} \zeta(x)$. Proposer un équivalent de $\zeta(x)$ quand x tend vers 1^+ .
- 1. Le réel $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ est défini si, et seulement si, la série $\sum \frac{1}{n^x}$ converge. C'est le cas si, et seulement si, x > 1 d'après le critère de Riemann.
- 2. Soient deux réels a et b tels que $1 < a \le b$. Pour chaque $n \in \mathbb{N}^*$, $\frac{1}{n^a} \ge \frac{1}{n^b}$, d'où $\zeta(a) \ge \zeta(b)$. Donc la fonction ζ est décroissante sur I.
- 3. La fonction $t\mapsto \frac{1}{t^x}=\mathrm{e}^{-x\ln t}$ est décroissante et continue. D'où (en comparant série et intégrale) :

$$\left[\frac{t^{-x+1}}{-x+1}\right]_2^{N+1} = \int_2^{N+1} \frac{1}{t^x} \, dt \le \sum_{n=2}^N \frac{1}{n^x} \le \int_1^N \frac{1}{t^x} \, dt = \left[\frac{t^{-x+1}}{-x+1}\right]_1^N.$$

Et les inégalités larges passent à la limite $N \to \infty$ (\bigwedge ce n'est pas le théorème des gendarmes qu'on utilise):

$$\frac{1}{(x-1)2^{x-1}} \le \sum_{n=2}^{\infty} \frac{1}{n^x} \le \frac{1}{x-1}.$$

Enfin, on ajoute 1 à chaque membre :

$$1 + \frac{1}{(x-1)2^{x-1}} \le \sum_{n=1}^{\infty} \frac{1}{n^x} \le 1 + \frac{1}{x-1}.$$

4. En $+\infty$, on utilise le théorème des gendarmes : $\frac{1}{(x-1)2^{x-1}}$ et $\frac{1}{x-1}$ tendent vers 0 quand x tend vers $+\infty$, donc $\zeta(x) \underset{x \to +\infty}{\longrightarrow} 1$.

Quand x tend vers 1^+ , $\frac{1}{(x-1)2^{x-1}}$ tend vers $+\infty$. Donc $\zeta(x) \underset{x \to 1^+}{\longrightarrow} +\infty$. Plus précisément, quand x tend vers 1^+ : $\zeta(x) \sim \frac{1}{x-1}$. Pour le prouver, on divise par $\frac{1}{x-1}$ chaque membre de l'encadrement :

$$(x-1) + \frac{1}{2^{x-1}} \le \frac{\zeta(x)}{\frac{1}{x-1}} \le (x-1) + 1$$

Les deux gendarmes tendent vers 1 quand x tend vers 1^+ , d'où $\frac{\zeta(x)}{\frac{1}{x-1}} \longrightarrow 1$.

Exercice 8 (*Série télescopique, comparaison série-intégrale & théorème de sommation des équivalents*). Soit la suite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par

$$u_n = \frac{1}{2n+1} + \frac{1}{2n+3} + \dots + \frac{1}{4n-1} = \sum_{k=n}^{2n-1} \frac{1}{2k+1}.$$

- 1. Montrer que $u_{n+1} u_n \sim \frac{1}{32n^3}$. En déduire que la suite (u_n) converge.
- 2. Montrer que sa limite vaut $\ell = \frac{\ln(2)}{2}$.
- 3. Montrer que $\ell u_n \sim \frac{1}{64n^2}$.
- 1. $u_n = \sum_{k=n}^{2n-1} \frac{1}{2k+1}$, d'où : $u_{n+1} = \sum_{k=n+1}^{2(n+1)-1} \frac{1}{2k+1} = \frac{1}{2n+3} + \frac{1}{2n+5} + \dots + \frac{1}{4n-1} + \frac{1}{4n+1} + \frac{1}{4n+3}$ et

$$u_{n+1} - u_n = \frac{1}{4n+1} + \frac{1}{4n+3} - \frac{1}{2n+1} = \frac{1}{(4n+1)(4n+3)(2n+1)}$$

après calcul pour tout mettre sur le même dénominateur. Donc $u_{n+1} - u_n \sim \frac{1}{32n^2}$.

La série $\sum (u_{n+1}-u_n)$ est de même nature que la série de Riemann $\sum \frac{1}{n^3}$, donc convergente.

Or $u_n = u_1 + \sum_{k=1}^{n-1} (u_{k+1} - u_k)$ (c'est une somme télescopique), donc la suite (u_n) converge.

2. La fonction $f: x \mapsto \frac{1}{2x+1}$ est continue et décroissante sur [n;2n], d'où (en comparant série et intégrale, voir figure) :

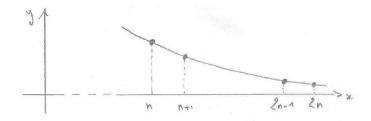


FIGURE 2 – COMPARAISON SÉRIE-INTÉGRALE.

$$\frac{1}{2}\ln\left(\frac{4n+1}{2n+1}\right) = \int_{n}^{2n} \frac{1}{2x+1} \, dx \le u_n \le \int_{n-1}^{2n-1} \frac{1}{2x+1} \, dx = \frac{1}{2}\ln\left(\frac{4n-1}{2n-1}\right).$$

Les deux gendarmes convergent et ont la même limite $\frac{1}{2}\ln 2$, donc u_n converge et sa limite vaut $\frac{1}{2}\ln 2$.

3. $u_n = \sum_{k=1}^{n-1} (u_{k+1} - u_k) + u_1$, d'où $\ell = \lim_{n \to \infty} u_n = \sum_{k=1}^{\infty} (u_{k+1} - u_k) + u_1$, donc $\ell - u_n = \sum_{k=n}^{\infty} (u_{k+1} - u_k)$ est le reste de la série convergente $\sum (u_{k+1} - u_k)$. Or $u_{k+1} - u_k \sim \frac{1}{32k^3}$, d'où $\ell - u_n \sim \sum_{k=n}^{\infty} \frac{1}{32k^3}$ d'après le théorème de sommation des \sim .

Or, en comparant série et intégrale, on obtient l'encadrement $\frac{1}{2n^2} \le \sum_{k=n}^{\infty} \frac{1}{k^3} \le \frac{1}{2(n-1)^2}$, d'où $\sum_{k=n}^{\infty} \frac{1}{k^3} \sim \frac{1}{2n^2}$, donc $\ell - u_n \sim \frac{1}{64n^2}$.

Exercice 9 (*Série télescopique & théorème de sommation des équivalents*). Soit la suite définie par $u_0 \in]0,1]$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sin u_n$.

- 1. Montrer que la suite (u_n) est convergente et que sa limite est nulle.
- 2. Étudier la limite de $\frac{u_{n+1}-u_n}{u_n^3}$. En déduire la nature de la série de terme général u_n^3 .
- 3. En étudiant $\ln(\frac{u_{n+1}}{u_n})$, montrer que la série de terme général u_n^2 diverge.
- 4. À l'aide d'un D.L., déterminer un réel α tel que $u_{n+1}^{\alpha} u_n^{\alpha}$ converge vers une limite non nulle. En déduire un équivalent de u_n .
- 1. Par récurrence, $u_n \in]0,1]$ pour tout $n \in \mathbb{N}$. D'une part, la suite (u_n) est donc minorée (par 0). D'autre part, elle est décroissante : $u_{n+1} = \sin u_n \le u_n$ pour tout $n \in \mathbb{N}$ car $\sin x \le x$ pour tout $x \ge 0$. La suite (u_n) est donc convergente car décroissante et minorée. Soit $\ell \in \mathbb{R}$ sa limite.

La fonction sin est continue, donc ℓ est un point fixe : $\ell = \sin \ell$. Or 0 est l'unique point fixe de la fonction sin (pour le prouver, étudier la fonction $[0,1] \to \mathbb{R}$, $x \mapsto x - \sin x$). La suite (u_n) tend donc vers 0.

2. Un développement limité fournit $\frac{\sin x - x}{x^3} = -\frac{1}{3!} + o(1)$ donc $\frac{u_{n+1} - u_n}{u_n^3} \to -\frac{1}{6}$ quand $n \to \infty$. car $u_n \to 0$.

On en déduit l'équivalence $u_n^3 \sim -6(u_{n+1}-u_n)$ qui ne change pas de signe. Or la série télescopique $\sum (u_{n+1}-u_n)$ converge car la suite (u_n) converge. Donc la série de terme général u_n^3 converge aussi.

- 3. $\ln(\frac{u_{n+1}}{u_n}) = \ln(\frac{\sin u_n}{u_n}) \sim \frac{\sin u_n}{u_n} 1 = \frac{\sin u_n u_n}{u_n} \sim -\frac{1}{6}u_n^2$ qui ne change pas de signe. La série de terme général u_n^2 a la même nature que la série de terme général $\ln(\frac{u_{n+1}}{u_n}) = \ln(u_{n+1}) \ln(u_n)$. Celle-ci est télescopique et a donc la même nature que la suite $(\ln u_n)$ qui diverge car $\ln(u_n) \to -\infty$ car u_n tend vers 0.
- 4. De $u_n \xrightarrow[n \to \infty]{} 0$, on déduit le D.L. $u_{n+1} = \sin u_n = u_n \frac{u_n^3}{3!} + o(u_n^3) = u_n \cdot \left(1 \frac{u_n^2}{6} + o(u_n^2)\right)$. Par suite $u_{n+1}^{\alpha} = u_n^{\alpha} \cdot \left(1 \alpha \frac{u_n^2}{6} + o(u_n^2)\right)$. (À noter que u_n^{α} est bien défini car $u_n > 0$.) Donc $u_{n+1}^{\alpha} u_n^{\alpha} = -\alpha \frac{u_n^2 + \alpha}{6} + o(u_n^2)$ tend vers une limite finie et non nulle si $\alpha = -2$. Cette limite vaut $\frac{1}{3}$.

On a montré que $u_{n+1}^{-2} - u_n^{-2}$ est équivalent à $\frac{1}{3}$, qui ne change pas de signe. Or la série $\sum \frac{1}{3}$ diverge, donc les sommes partielles sont équivalentes (d'après le théorème de sommation des équivalents) : $\sum_{k=0}^{n-1} \left(u_{n+1}^{-2} - u_n^{-2}\right) \underset{n \to \infty}{\sim} \frac{n}{3}$. Cette somme est télescopique, d'où $u_n^{-2} - u_0^{-2} \sim \frac{n}{3}$. En divisant par n, $\frac{u_n^{-2}}{n}$ tend vers $\frac{1}{3}$. Or u_n est positif, d'où $\frac{u_n^{-1}}{\sqrt{n}}$ tend vers $\frac{1}{\sqrt{3}}$. Donc $u_n \underset{n \to \infty}{\sim} \sqrt{\frac{3}{n}}$.

Exercice 10 (Formule de Stirling). Montrer que la série $\sum (-1)^n \ln \left(1 + \frac{1}{n}\right)$ est convergente et que, pour tout $p \in \mathbb{N}$, $\sum_{n=1}^{2p+1} (-1)^n \ln \left(1 + \frac{1}{n}\right) = 2 \ln u_p$, où $u_p = \frac{(2p+1)!}{2^{2p}p!^2\sqrt{2p+2}}$. En utilisant la formule de Stirling, déterminer un équivalent de u_p et en déduire que $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \ln 2 - \ln \pi$.

 $\overline{\text{La suite } \ln \left(1 + \frac{1}{n}\right) \text{ tend vers 0 en d\'e} \text{croissant, donc la s\'erie } \sum (-1)^n \ln \left(1 + \frac{1}{n}\right) \text{ converge d'après le TSA. En s\'eparant les termes positifs et n\'egatifs :}$

$$\sum_{n=1}^{2p+1} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \sum_{q=1}^p \ln \left(\frac{2q+1}{2q}\right) - \sum_{q=0}^p \ln \left(\frac{2q+2}{2q+1}\right) = \ln \left(\frac{3^2 \times 5^2 \times \dots \times (2p+1)^2}{2^2 \times 4^2 \times \dots \times (2p)^2 \times (2p+2)}\right) = 2 \ln u_p$$
 en notant $u_p = \frac{3 \times 5 \times \dots \times (2p+1)}{2 \times 4 \times \dots \times (2p) \times \sqrt{2p+2}} = \frac{2 \times 3 \times 4 \times 5 \times 6 \times \dots (2p) \times (2p+1)}{\left[2 \times 4 \times \dots \times (2p)\right]^2 \times \sqrt{2p+2}} = \frac{(2p+1)!}{p!^2 \cdot 2^{2p} \cdot \sqrt{2p+2}}.$

En utilisant la formule de Stirling $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$

$$u_p \sim \frac{(2p+1)^{2p+1} \sqrt{2\pi(2p+1)}}{\mathrm{e}^{2p+1}} \times \left(\frac{\mathrm{e}^p}{p^p \sqrt{2\pi p}}\right)^2 \times \frac{1}{2^{2p} \sqrt{2p+2}} \sim \frac{2}{\mathrm{e}\sqrt{2\pi}} \times \left(\frac{2p+1}{2p}\right)^{2p+1}.$$

On lève la forme indéterminée : $\left(\frac{2p+1}{2p}\right)^{2p+1} = e^{(2p+1)\ln\left(1+\frac{1}{2p}\right)} \xrightarrow[p \to \infty]{} e$. D'où $u_p \xrightarrow[p \to \infty]{} \frac{2}{\sqrt{2\pi}}$. D'où $\sum_{n=1}^{2p+1} (-1)^n \ln\left(1+\frac{1}{n}\right) = 2\ln u_p \xrightarrow[p \to \infty]{} \ln 2 - \ln \pi$.

Donc $\sum_{n=1}^{2p+1} (-1)^n \ln \left(1 + \frac{1}{n}\right) \xrightarrow{p \to \infty} \ln 2 - \ln \pi$. C'est la limite de la sous-suite des sommes partielles de rang impair. Or la suite des sommes partielles

converge car on a montré que la série converge. D'où la suite des sommes partielles tend vers $\ln 2 - \ln \pi$. Donc $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \ln 2 - \ln \pi$.