COLLE Nº 01

Séries numériques

Exercice 1 (Nombres complexes).

Soit un réel θ fixé de sorte que $\sin \frac{\theta}{2} \neq 0$.

Soient les deux suites $(C_n)_{n\in\mathbb{N}^*}$ et $(S_n)_{n\in\mathbb{N}^*}$ définies par

$$C_n = \sum_{k=0}^n \cos(k\theta)$$
 et $S_n = \sum_{k=0}^n \sin(k\theta)$.

1. Pour chaque $n \in \mathbb{N}^*$, montrer que

$$C_n + iS_n = e^{i\frac{n\theta}{2}} \cdot \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}$$

et en déduire que la suite (C_n) est bornée.

2. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{\cos(k\theta)}{k} = \frac{C_n}{n+1} - 1 + \sum_{k=1}^{n} \frac{C_k}{k(k+1)}$$

et en déduire que la série $\sum \frac{\cos(k\theta)}{k}$ est convergente.

Exercice 2. Soit, pour chaque $n \geq 2$,

$$a_n = \int_0^1 \frac{x^n}{1 + x + \dots + x^{n-1}} dx$$
 et $b_n = \frac{\ln n}{n^2 - 1}$.

- 1. La série $\sum b_n$ est-elle convergente?
- 2. Calculer, pour tout $n \ge 2$, $\int_0^1 \frac{x^n}{1 + (n-1)x^{n+1}} dx$.
- 3. Quelle est la nature de la série $\sum a_n$?

Exercice 3 (Les séries de Bertrand).

Soient α et β deux réels strictement positifs.

- 1. La série $\sum_{n\geq 2} \frac{n^{\alpha}}{(\ln n)^{\beta}}$ est-elle convergente?
- 2. On suppose que $\alpha > 1$.
 - (a) La série $\sum_{n\geq 2} \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ est-elle convergente?
 - (b) La série $\sum_{n\geq 2} \frac{(\ln n)^{\beta}}{n^{\alpha}}$ est-elle convergente?
- 3. On suppose que $\alpha \le 1$. La série $\sum_{n\ge 2} \frac{(\ln n)^{\beta}}{n^{\alpha}}$ est-elle convergente?
- 4. On suppose que $\alpha < 1$. La série $\sum_{n \geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$ est-elle convergente?
- 5. (a) La série $\sum_{n\geq 2} \frac{1}{n \ln n}$ est-elle convergente?
 - (b) Pour quelles valeurs de β la série $\sum_{n\geq 2} \frac{1}{n(\ln n)^{\beta}}$ converge-t-elle?