Kdo du 24/03/2025

Soient E un \mathbb{K} -espace vectoriel de dimension 3 et un endomorphisme $\varphi \in \mathcal{L}(E)$ tel que $\varphi^3 = 0$ et $\varphi^2 \neq 0$. (On a noté $\varphi^2 = \varphi \circ \varphi$ et $\varphi^3 = \varphi \circ \varphi \circ \varphi$.)

- 1. Montrer qu'il existe un vecteur u_0 tel que la famille $(u_0, \varphi(u_0), \varphi^2(u_0))$ est une base de E.
- 2. Ecrire la matrice de φ dans cette base.
- 3. En déduire qu'un endomorphisme commute avec φ si, et seulement si, il est de la forme α id_E + $\beta \varphi$ + $\gamma \varphi^2$ où α , β , γ sont des éléments de \mathbb{K} .
- 4. Déterminer tous les endomorphismes de $\mathbb{K}_2[X]$ qui commutent avec

$$\begin{array}{ccc} f: & \mathbb{K}_2[X] & \to & \mathbb{K}_2[X] \\ P & \mapsto & P'. \end{array}$$





