Colle 05 Intégrales généralises

BARBE Marion

Exercice 1. Soient
$$I_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{\sin t} dt$$
 et $J_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{t} dt$.

- 1. Montrer que I_n et J_n sont bien définies. Montrer que (I_n) est constante.
- 2. Montrer que $I_n J_n \underset{n \to +\infty}{\longrightarrow} 0$.
- 3. Montrer la convergence de $\int_0^{+\infty} \frac{\sin t}{t} \ \mathrm{d}t$ et la calculer.

1.
$$\frac{\sin((2n+1)t)}{\sin(t)} \sim_{0} \frac{(2n+1)t}{t} \sim_{0} 2n + 1 \text{ et } t \mapsto \frac{\sin((2n+1)t)}{\sin(t)} \text{ est continue sur }]0, \frac{\pi}{2}] \text{ donc } \mathcal{I}_{n} \text{ est bien définie.}$$

$$\frac{\sin((2n+1)t)}{t} \sim_{0} \frac{(2n+1)t}{t} \sim_{0} 2n + 1 \text{ et } t \mapsto \frac{\sin((2n+1)t)}{t} \text{ est continue sur }]0, \frac{\pi}{2}] \text{ donc } \mathcal{I}_{n} \text{ est bien définie.}$$

$$\mathcal{I}_{n+1} - \mathcal{I}_{n} = \int_{0}^{\frac{\pi}{2}} \frac{\sin((2n+3)t) - \sin((2n+1)t)}{\sin(t)} dt = \int_{0}^{\frac{\pi}{2}} \frac{2\cos(2(n+1)t)\sin(t)}{\sin(t)} dt \, \mathcal{I}_{n+1} - \mathcal{I}_{n} = \int_{0}^{\frac{\pi}{2}} 2\cos(2(n+1)t) dt = \left[\frac{2}{2(n+1)}\sin(2(n+1)t)\right]_{0}^{\frac{\pi}{2}} = 0, \text{ donc } \forall n \in \mathbb{N},$$

$$\mathcal{I}_{n+1} = \mathcal{I}_{n} = \mathcal{I}_{0} = \frac{\pi}{2}$$

2.
$$\mathcal{I}_{n} - \mathcal{J}_{n} = \int_{0}^{\frac{\pi}{2}} \sin((2n+1)) \left(\frac{1}{\sin(t)} - \frac{1}{t}\right) dt$$
.
Or $f: t \mapsto \frac{1}{\sin(t)} - \frac{1}{t} = \frac{t - \sin t}{t \sin t} \sim_{0} \frac{t}{6}$ se prolonge par continuité en 0 en posant $f(0 = 0)$. Pour $x \neq 0$,
$$f'(x) = \frac{-\cos x}{\sin x} + \frac{1}{x^{2}} = \frac{-x^{2} \cos x - \sin^{2} x}{x^{2} \sin^{2} x} = \frac{-x^{2} \cos x - (1 - \cos 2x)/2}{x^{2} \sin^{2} x}$$

qui vers $\frac{1}{6}$ en 0. Donc f est d eclasse C^1 .

On fait une intégration par partie dans l'intégrale définissant $\mathcal{I}_{n+1} - \mathcal{I}_n$ en dérivant f et en intégrant $\sin(2n+1)t$:

$$\mathcal{I}_n - \mathcal{J}_n = \left[f(t) \frac{-\cos(2n+1)}{2n+1} \right]_0^{\pi/2} + \frac{1}{2n+1} \int_0^{\pi/2} f'(t) \cos(2n+1) dt$$

La dernière intégrale est bornée indépendamment de n. On en déduit

$$\lim_{n \to +\infty} \mathcal{I}_n - \mathcal{J}_n = 0.$$

Il vient $\lim_{n\to+\infty} \mathcal{J}_n = \frac{\pi}{2}$

$$3. \ \forall x,y > 0, x < y, \ \int_{x}^{y} \frac{\sin(t)}{t} dt = \left[\frac{1 - \cos(t)}{t}\right]_{x}^{y} + \int_{x}^{y} \frac{1 - \cos(t)}{t^{2}} dt \ Or \ \frac{1 - \cos(t)}{t} \sim_{0} \frac{t}{2} \ d'où \lim_{t \to 0} \frac{1 - \cos(t)}{t} = 0 \ et \lim_{t \to +\infty} \frac{1 - \cos(t)}{t} = 0 \ De \ plus, \ \frac{1 - \cos(t)}{t^{2}} \sim_{0} \frac{1}{2} \ et \left|\frac{1 - \cos(t)}{t^{2}}\right| \leqslant \frac{2}{t^{2}}, \ donc \ t \mapsto \frac{1 - \cos(t)}{t^{2}} \ est \ intégrable \ sur \ \mathbb{R}_{+} \ et \ par \ intégration \ par \ partie :$$

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt$$
$$\int_0^{+\infty} \frac{\sin(t)}{t} dt \ converge.$$

On pose le changement de variable
$$u = (2n+1)t$$
:
$$\mathcal{J}_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt = \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin(u)}{\frac{u}{2n+1}} \frac{du}{2n+1} = \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin(u)}{u} du, \ donc :$$

$$\int_{0}^{+\infty} \frac{\sin(t)}{t} dt = \lim_{n \to +\infty} \mathcal{J}_n = \frac{\pi}{2}$$

CASSIN Naoelle

 $\underline{\textbf{Exercice 2.}} \ \ \text{Soient} \ \alpha>0 \ \text{et} \ f\in \mathcal{C}^0\left(\left[1,+\infty\left[,\mathbb{R}_+^*\right)\right.\right.$

- 1) On suppose que f est intégrable sur $[1,+\infty[$. On pose $R(x)=\int_x^{+\infty}f(t)dt$ pour $x\geqslant 1$. Étudier l'intégrabilité de $x\mapsto \frac{f(x)}{R(x)^\alpha}$ sur $[1,+\infty[$.
- 2) On suppose que f n'est pas intégrable sur $[1, +\infty [$. On pose $S(x) = \int_1^x f(t)dt$ pour $x \geqslant 1$. Étudier l'intégrabilité de $x\mapsto \frac{f(x)}{S(x)^{\alpha}}$ sur $[2,+\infty[.$

Solution 2.

1) On commence par quelques propriétés importantes de R.

Pour tout x > 0, $R(x) = \int_1^{+\infty} f(t)dt - \int_1^x f(t)dt$, ce qui permet de montrer que R est de classe C^1 sur $[1, +\infty]$, de dérivée -f et que $\lim_{x \to +\infty} R(x) = 0$. De plus, R est strictement positive sur $[1, +\infty]$ et f est également positive, donc $g: x \mapsto \frac{f(x)}{R(x)^{\alpha}}$ est de signe fixe et l'étude de l'intégrabilité équivaut à l'existence d'une limite finie pour $x \mapsto \int_1^x g(t)dt$ lorsque x tend vers $+\infty$. Soit X > 1, comme R' = -f, on obtient

$$\int_{1}^{X} \frac{f(x)}{R(x)^{\alpha}} dx = \begin{cases} \left[-\frac{R(x)^{1-\alpha}}{(1-\alpha)} \right]_{1}^{X} & \text{si } \alpha \neq 1\\ \left[-\ln(R(x)) \right]_{1}^{X} & \text{si } \alpha = 1 \end{cases}$$

Puisque $\lim_{x\to +\infty} R(x)=0$, l'intégrale considérée admet une limite finie lorsque x tend vers $+\infty$ si et seulement si $1-\alpha>0$ c'est-à-dire $\alpha<1$. Finalement $x\mapsto \frac{f(x)}{R(x)^{\alpha}}$ est intégrable sur $[1,+\infty[$ si et seulement si $\alpha<1$.

2) La fonction S est une fonction de classe C^1 sur $[1,+\infty[$, de dérivée f, nulle en 0, strictement positive $sur]1,+\infty[$, ce qui justifie l'existence et la continuité de $g_\alpha: x\mapsto \frac{f(x)}{S(x)^\alpha}$ sur $[2,+\infty[$, et de limite infinie en $+\infty$. Une primitive de g_α sur $[2,+\infty[$ est $\frac{1}{(1-\alpha)S^{\alpha-1}}$ si $\alpha \neq 1$ et $\ln S$ si $\alpha = 1$. Comme dans la première question, on montre que g_α est intégrable sur $[2,+\infty[$ si et seulement si $\alpha>1$.

DA Arnaud

Exercice 3. Soit $f\in\mathcal{C}^0(\mathbb{R},\mathbb{R})$ intégrable sur $\mathbb{R}.$ On pose

$$g: \left\{ \begin{array}{ccc} \mathbb{R}^* \to & \mathbb{R} \\ x & \mapsto & f(x-1/x) \end{array} \right.$$

Montrer que g est intégrable sur \mathbb{R}_{-}^{*} et \mathbb{R}_{+}^{*} et que

$$\int_{-\infty}^{0} g(x)dx + \int_{0}^{+\infty} g(x)dx = \int_{-\infty}^{+\infty} f(x)dx$$

- Soit $\varphi_1: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to \mathbb{R} \\ x & \mapsto & x-1/x \end{array} \right.$. Pour tout $x>0, \varphi_1'(x)=1+\frac{1}{x^2}>0$. Ainsi φ_1 est un \mathcal{C}^1 difféomorphisme de \mathbb{R}_+^* dans $\varphi_1\left(\mathbb{R}_+^*\right) = \mathbb{R}$. De même $\varphi_2: x \mapsto x - 1/x$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_-^* dans \mathbb{R} . De plus, soit $y \in \mathbb{R}$. L'équation $\varphi_1(x) = y$ est équivalente à $x^2 - yx - 1 = 0$ ce qui donne $x = \frac{y \pm \sqrt{y^2 + 4}}{2}$ et puisque x doit être positif, on obtient $\varphi_1^{-1}(y) = \frac{y + \sqrt{y^2 + 4}}{2}$. Le même calcul donne $\varphi_2^{-1}(y) = \frac{y - \sqrt{y^2 + 4}}{2}$.

Soit K un segment de \mathbb{R}_+^* . On a

$$\int_{K} |g(x)| dx = \int_{K} |f\left(\varphi_{1}(x)\right)| dx = \int_{\varphi(K)} |f(u)| \left(\varphi_{1}^{-1}\right)'(u) du$$

 $\operatorname{avec}\left(\varphi_{1}^{-1}\right)'(u) = \frac{1}{2}\left(1 + \frac{u}{\sqrt{u^{2} + 4}}\right). \ \ Comme \ \ pour \ tout \ u > 0, \ \ on \ \ a \ 0 \leqslant \left(\varphi_{1}^{-1}\right)'(u) \leqslant 1, \ \ on \ \ obtient \\ \int_{K} |g(x)| dx \leqslant \int_{\varphi(K)} |f(u)| du \leqslant \int_{\mathbb{R}} |f(u)| du. \ \ Par \ \ d\'efinition, \ \ g \ \ est \ \ int\'egrable \ \ sur \ \mathbb{R}_{+}^{*}. \ \ On \ \ refait \ \ le \ \ m\'eme$ calcul sur les segments de \mathbb{R}_{-}^{*} avec $\left(\varphi_{2}^{-1}\right)'(u) = \frac{1}{2}\left(1 - \frac{u}{\sqrt{u^{2}+4}}\right)$ dont les valeurs sont dans [0,1].

- Le fait d'avoir g intégrable sur \mathbb{R}_{+}^{*} et \mathbb{R}_{+}^{*} ainsi que les deux \mathcal{C}^{1} -difféomorphismes φ_{1} et φ_{2} permet de réaliser le changement de variable dans les intégrales, ce qui donne

$$\int_{-\infty}^{0} g(x)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u) \left(1 - \frac{y}{\sqrt{y^2 + 4}} \right) du$$

 $ainsi\ que$

$$\int_0^{+\infty} g(x)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u) \left(1 + \frac{y}{\sqrt{y^2 + 4}} \right) du$$

En ajoutant, on obtient l'égalité demandée.

XXX

Exercice 4. Soit f une fonction convexe \mathcal{C}^2 de \mathbb{R} vers \mathbb{R} . On suppose que f tend vers 0 en $+\infty$. Étudier en $+\infty$ le comportement de f'(x), xf'(x), f''(x).

Exercice 5. Déterminer la nature de $\int_2^{+\infty} \frac{\cos x}{\ln x} dx$.

Pour tout $a \in \mathbb{R}$, $\tau_{f,a}(x) = \frac{f(x) - f(a)}{x - a}$ tend vers 0 en $+\infty$.

Comme le taux d'accroissement est croissant, on en déduit que $f' \leq 0$. Et $\lim_{t \to \infty} f' = t \in \mathbb{R}$ car f' est croissante majorée. Si l < 0, $f'(x) \le l$ et donc $f(x) - f(a) \le l(x-a)$ et f tend vers $-\infty$, ce qui contredit
$$\label{eq:limits} \begin{split} l'&hypoth\`{e}se\lim_{x\to+\infty}f=0.\\ &Donc\ l=0. \end{split}$$

On en déduit que f' est négative et que $\int_0^{+\infty} f'(x) dx$ converge. Donc $\int_x^{2x} -f'$ tend vers 0 avec -f'

décroissante. $\int_{-\infty}^{2x} f'(t) dt \ge xf'(x)$ et donc tend vers 0.

On ne peut rien dire sur f".

Si f" est le la fonction triangle de base $\left[n - \frac{1}{n^3}, n + \frac{1}{n^3}\right]$ et de sommet (n, n).

On a $\int_{2}^{+\infty} f''$ existe et $f'(x) = -\int_{x}^{+\infty} f''$ est un $O(\frac{1}{x^2})$ et f est un $O(\frac{1}{x})$ et donc tend vers 0 en $+\infty$.

Solution 5. On pose:

$$u(x) = \frac{1}{\ln x}$$
, $v'(x) = \cos x$ et $u'(x) = -\frac{1}{x(\ln x)^2}$, $v(x) = \sin x$.

Par une intégration par parties sur [2, X] (avec X > 2), on obtient :

$$\int_2^X \frac{\cos x}{\ln x} dx = \left[\frac{\sin x}{\ln x}\right]_2^X + \int_2^X \frac{\sin x}{x(\ln x)^2} dx.$$

Étudions le comportement de chaque terme lorsque $X \to +\infty$:

- $-\lim_{X\to+\infty} \left[\frac{\sin x}{\ln x}\right]_2^X = \lim_{X\to+\infty} \frac{\sin X}{\ln X} \frac{\sin 2}{\ln 2} = -\frac{\sin 2}{\ln 2}. \ Donc \ ce \ terme \ converge.$
- Pour le second terme :

$$\int_{2}^{+\infty} \frac{\sin x}{x(\ln x)^2} \, dx,$$

 $on \ a :$

$$\left|\frac{\sin x}{x(\ln x)^2}\right| \leq \frac{1}{x(\ln x)^2} \quad Et \ l'int\'egrale \ \int_2^{+\infty} \frac{1}{x(\ln x)^2} \ dx \ \text{converge}$$

C'est un classique, que l'on peut vérifier par le changement de variable $t = \ln x$, $dt = \frac{1}{x}dx$, ce qui donne:

$$\int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 2}^{+\infty} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{\ln 2}^{+\infty} < +\infty.$$

Donc l'intégrale avec $\sin x$ **converge absolument**.

Conclusion: l'intégrale

$$\int_{2}^{+\infty} \frac{\cos x}{\ln x} \, dx$$

converge.

Remarque : l'intégrale

$$\int_{0}^{+\infty} \left| \frac{\cos x}{\ln x} \right| dx$$

diverge, $car |\cos x| \ge \frac{1}{2}$ sur une infinité d'intervalles de longueur non nulle, et $\frac{1}{\ln x}$ n'est pas intégrable absolument sur $[2, +\infty)$. Ainsi, l'intégrale est convergente mais non absolument convergente.