$$Int\'egrales$$

Exercice 1. Quelle est la nature de l'intégrale $\int_0^{+\infty} (x+2-\sqrt{x^2+4x+1}) dx$?

Exercice 2. Soit $F(x) = \int_0^{+\infty} \frac{dt}{1 + x^3 + t^3}$.

- 1. Montrer que le réel F(x) est défini pour tout $x \ge 0$.
- 2. Quel est le sens de variation de la fonction F sur $[0, +\infty[$?
- 3. Montrer que l'intégrale $\int_0^{+\infty} \frac{dt}{t^2 t + 1}$ converge et la calculer.
- 4. À l'aide du changement de variable $u = \frac{1}{t}$, calculer F(0).
- 5. À l'aide du changement de variable t = xu, étudier la limite $\lim_{x \to +\infty} F(x)$.

Exercice 3 (d'après CCP TSI 2011 Math 1). Soit f la fonction définie pour tout réel x strictement positif par l'intégrale

$$f(x) = \int_0^1 \frac{e^t}{x+t} dt$$

qu'on ne cherchera pas à calculer.

- 1. Montrer que la fonction f est décroissante.
- 2. Montrer que, pour tout réel x strictement positif,

$$\frac{e-1}{x+1} \le f(x) \le \frac{e-1}{x}.$$

Qu'en déduire?

3. Soit q la fonction définie pour tout réel x strictement positif par l'intégrale

$$g(x) = \int_0^1 \frac{e^t - 1}{x + t} dt.$$

Montrer que la fonction q est bornée.

- 4. En déduire que f(x) est équivalent à $-\ln(x)$ quand x tend vers 0^+ .
- 5. Soit x_0 un réel strictement positif.

Montrer que, pour tout $x \in \left[\frac{x_0}{2}, +\infty\right[$,

$$|f(x) - f(x_0)| \le \frac{2 \cdot e \cdot |x - x_0|}{x_0^2}.$$

Qu'en déduire?