CORRIGÉ DE LA COLLE Nº 05

Int'egrales

15 octobre 2025

Exercice 1. Quelle est la nature de l'intégrale $\int_0^{+\infty} (x+2-\sqrt{x^2+4x+1}) dx$?

Notons $f(x) = x + 2 - \sqrt{x^2 + 4x + 1}$. L'intégrale $\int_0^\infty f$ est impropre en $+\infty$. On cherche un équivalent de f en $+\infty$:

$$\sqrt{x^2 + 4x + 1} = x \cdot \sqrt{1 + \frac{4}{x} + \frac{1}{x^2}} = x \cdot \left[1 + \frac{1}{2}\left(\frac{4}{x} + \frac{1}{x^2}\right) - \frac{1}{8}\left(\frac{4}{x}\right)^2 + o\left(\frac{1}{x^2}\right)\right] = x + 2 - \frac{3}{2}\frac{1}{x} + o\left(\frac{1}{x}\right),$$

d'où $f(x) = \frac{3}{2} \frac{1}{x} + o(\frac{1}{x}) \sim \frac{3}{2} \frac{1}{x}$, qui ne change pas de signe. Or $\int_1^{+\infty} \frac{1}{x} dx$ converge (d'après le critère de Riemann en $+\infty$), ce qui montre que $\int_0^{+\infty} f$ diverge.

Exercice 2. Soit $F(x) = \int_0^{+\infty} \frac{dt}{1 + x^3 + t^3}$.

- 1. Montrer que le réel F(x) est défini pour tout $x \geq 0$.
- 2. Quel est le sens de variation de la fonction F sur $[0, +\infty[$?
- 3. Montrer que l'intégrale $\int_0^{+\infty} \frac{dt}{t^2 t + 1}$ converge et la calculer.
- 4. À l'aide du changement de variable $u = \frac{1}{t}$, calculer F(0).
- 5. À l'aide du changement de variable t = xu, étudier la limite $\lim_{x \to +\infty} F(x)$.

$$\int_0^{+\infty} \frac{1}{t^2 - t + 1} dt = \frac{4}{3} \int_{-1/\sqrt{3}}^{+\infty} \frac{1}{1 + u^2} \frac{\sqrt{3}}{2} du = \frac{2}{\sqrt{3}} \left[\operatorname{Arctan}(u) \right]_{-1/\sqrt{3}}^{+\infty} = \frac{2}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{-\pi}{6} \right) = \frac{4\pi}{3\sqrt{3}}.$$

4. Le changement de variable $u=\frac{1}{4}$ est de classe \mathcal{C}^1 et strictement monotone, d'où

$$F(0) = \int_0^{+\infty} \frac{dt}{1+t^3} dt = -\int_{+\infty}^0 \frac{1}{1+u^3} \frac{-du}{u^2} = \int_0^{+\infty} \frac{u}{1+u^3} du.$$

Au dénominateur, $1+u^3=(1+u)(1-u+u^2)$ et, au numérateur, u=1+u-1, d'où $\frac{u}{1+u^3}=\frac{1}{1-u+u^2}-\frac{1}{1+u^3}$. D'où $F(0)=\frac{4\pi}{3\sqrt{3}}-F(0)$ d'après la question précédente. Donc $F(0)=\frac{2\pi}{3\sqrt{3}}$.

^{1.} Pour tout $(x,t) \in [0,+\infty[$, $1+x^3+t^3$ est différent de 0 car supérieur à 1. L'intégrale F(x) est donc impropre en $+\infty$. Or $\frac{1}{1+x^3+t^3} \underset{t\to +\infty}{\sim} \frac{1}{t^3}$ qui ne change pas de signe. Et l'intégrale $\int_1^{+\infty} \frac{1}{t^3} dt$ converge d'après le critère de Riemann en $+\infty$. Donc l'intégrale F(x) converge, autrement dit : le réel F(x) est défini.

Donc l'intégrale F(x) converge, autrement dit : le réel F(x) est défini.

2. Soit $x \ge y \ge 0$. Alors, pour tout $t \ge 0$, $1 + x^3 + t^3 \ge 1 + y^3 + t^3 > 0$, d'où $\frac{1}{1+x^3+t^3} \le \frac{1}{1+y^3+t^3}$ car la fonction inverse est décroissante sur $]0, +\infty[$. Donc $F(x) \le F(y)$ par croissance de l'intégrale. La fonction $[0, +\infty[$.

^{3.} Pour tout $t \ge 0$, $t^2 - t + 1 = \left(t - \frac{1}{2}\right)^2 + \frac{3}{4} = \frac{3}{4}\left(1 + u^2\right)$ en posant $u = \frac{2}{\sqrt{3}}\left(t - \frac{1}{2}\right)$. Ce changement de variable est de classe \mathcal{C}^1 et strictement monotone et $du = \frac{2}{\sqrt{3}}dt$, d'où :

5. Soit x strictement positif: le changement de variable t = xu est alors de classe \mathcal{C}^1 et strictement monotone, d'où

$$F(x) = \int_0^{+\infty} \frac{dt}{1 + x^3 + t^3} = \int_0^{+\infty} \frac{x du}{1 + x^3 + x^3 u^3} = \frac{1}{x^2} \int_0^{+\infty} \frac{du}{\frac{1}{x^3} + 1 + u^3} \le \frac{1}{x^2} F(0).$$

D'où $0 \le F(x) \le \frac{1}{x^2} F(0)$. Donc F(x) tend vers 0 quand x tend vers $+\infty$, d'après le théorème des gendarmes.

Exercice 3 (d'après CCP TSI 2011 Math 1). Soit f la fonction définie pour tout réel x strictement positif par l'intégrale

$$f(x) = \int_0^1 \frac{e^t}{x+t} dt$$

qu'on ne cherchera pas à calculer.

- 1. Montrer que la fonction f est décroissante.
- 2. Montrer que, pour tout réel x strictement positif,

$$\frac{e-1}{x+1} \le f(x) \le \frac{e-1}{x}.$$

Qu'en déduire?

3. Soit g la fonction définie pour tout réel x strictement positif par l'intégrale

$$g(x) = \int_0^1 \frac{e^t - 1}{x + t} dt.$$

Montrer que la fonction g est bornée.

- 4. En déduire que f(x) est équivalent à $-\ln(x)$ quand x tend vers 0^+ .
- 5. Soit x_0 un réel strictement positif.

Montrer que, pour tout $x \in \left[\frac{x_0}{2}, +\infty\right[$

$$|f(x) - f(x_0)| \le \frac{2 \cdot e \cdot |x - x_0|}{x_0^2}.$$

Qu'en déduire?

Soit f la fonction définie pour tout réel x strictement positif par l'intégrale $f(x) = \int_0^1 \frac{e^t}{x+t} dt$.

- 1. Soient x_1 et x_2 deux réels tels que $x_2 \ge x_1 > 0$. Alors $\frac{\mathrm{e}^t}{x_2 + t} \le \frac{\mathrm{e}^t}{x_1 + t}$ pour tout $t \in [0, 1]$, d'où (par croisssance de l'intégrale) $f(x_2) \le f(x_1)$. Donc f est décroissante.
- 2. Pour tout $t \in [0,1]$, $\frac{e^t}{x+1} \le \frac{e^t}{x+t} \le \frac{e^t}{x}$, d'où $\int_0^1 \frac{e^t}{x+1} dt \le f(x) \le \int_0^1 \frac{e^t}{x}$, donc

 $\frac{\mathrm{e}-1}{x+1} \leq f(x) \leq \frac{\mathrm{e}-1}{x}. \text{ On divise chaque membre de l'inégalité précédente par } \frac{\mathrm{e}-1}{x} \text{ qui est strictement positif : } \frac{x}{x+1} \leq \frac{f(x)}{\frac{\mathrm{e}-1}{x}} \leq 1, \text{ d'où } \frac{f(x)}{\frac{\mathrm{e}-1}{x}} \text{ tend vers 1 quand } x \text{ tend vers } +\infty, \text{ d'après le théorème des gendarmes. Donc } f(x) \sim \frac{\mathrm{e}-1}{x}$ quand x tend vers $+\infty$.

- 3. Soit $t \in [0,1]$: la fonction exp est continue sur [0,t] et dérivable sur]0,t[, d'où, d'après le théorème des accroissements finis, il existe $c \in]0,t[$ tel que $e^t e^0 = e^c \cdot (t-0)$. D'où $e^c \le e$ car $t \in [0,1]$ et exp est croissante, donc $e^t 1 \le e \times t$ pour tout $t \in [0,1]$. $g(x) = \int_0^1 \frac{e^t 1}{x + t} \, dt$. D'une part, $g(x) \ge 0$ car l'intégrande est positif sur [0,1]; d'autre part, $g(x) \le \int_0^1 e \, dt \le e$ car $\forall t \in [0,1]$, $\frac{e^t 1}{x + t} \le \frac{e \times t}{x + t} \le e$ car $\frac{t}{x + t} \le 1$ car x > 0. Donc la fonction g est bornée.
- 4. $g(x) = \int_0^1 \frac{\mathrm{e}^t}{x+t} \, dt \int_0^1 \frac{1}{x+t} \, dt = f(x) \ln(1+x) + \ln(x)$, d'où $f(x) = g(x) + \ln(1+x) \ln(x)$, donc $\frac{f(x)}{\ln(x)} = \frac{g(x)}{\ln(x)} + \frac{\ln(1+x)}{\ln(x)} 1$ tend vers -1 car $\ln(x) \underset{x\to 0^+}{\longrightarrow} -\infty$ et g est bornée et $\ln(1+x) \underset{x\to 0^+}{\longrightarrow} 0$. Donc f(x) est équivalent à $-\ln(x)$ quand x tend vers 0^+ .

5. Soit $x_0 > 0$ et $x \in \left[\frac{x_0}{2}, +\infty\right[: f(x) - f(x_0) = \int_0^1 e^t \left(\frac{1}{x+t} - \frac{1}{x_0+t}\right) dt = (x_0 - x) \int_0^1 \frac{e^t}{(x+t)(x_0+t)} dt$. Or, pour tout $t \in [0,1], \ \frac{e^t}{(x+t)(x_0+t)} \le \frac{e}{xx_0} \le \frac{2e}{x_0x_0}, \ \text{donc} \ |f(x) - f(x_0)| \le \frac{2 \cdot e \cdot |x - x_0|}{x_0^2}.$

Quand x tend vers x_0 , $\frac{2 \cdot \mathbf{e} \cdot |x - x_0|}{x_0^2}$ tend vers zéro, et d'après l'inégalité de la question précédente et le théorème des gendarmes, $|f(x) - f(x_0)|$ aussi, d'où f(x) tend $f(x_0)$. Donc la fonction f est continue en x_0 . Ceci est vrai pour tout $x_0 > 0$. Donc f est continue sur $]0, +\infty[$.