CORRIGÉ DU T.D. Nº 3

Int'egrales

25 octobre 2025

Exercice 1. 1. Montrer que la fonction G définie pour tout $x \in [0, \frac{\pi}{2}]$ par

$$G(x) = \int_0^{\sin^2 x} \operatorname{Arcsin}(\sqrt{t}) dt + \int_0^{\cos^2 x} \operatorname{Arccos}(\sqrt{t}) dt$$

est constante.

2. Calculer les intégrales

$$\int_0^1 u \cdot \operatorname{Arcsin}(u) \, du \qquad \text{et} \qquad \int_0^1 \operatorname{Arcsin}(\sqrt{t}) \, dt.$$

Conclure.

1. La fonction $t \mapsto \operatorname{Arcsin}(\sqrt{t})$ est continue, elle possède donc une primitive E qui permet d'écrire $\int_0^{\sin^2 x} \operatorname{Arcsin}(\sqrt{t}) dt = E(\sin^2 x) - E(0)$. De même $\int_0^{\cos^2 x} \operatorname{Arccos}(\sqrt{t}) dt = F(\cos^2 x) - F(0)$ en notant F une primitive de la fonction continue $t \mapsto \operatorname{Arccos}(\sqrt{t})$.

La fonction G est dérivable car les fonctions E et F le sont. Et, pour tout $x \in [0, \frac{\pi}{2}]$,

$$G'(x) = (\sin^2 x)' \cdot \operatorname{Arcsin}(\sqrt{\sin^2 x}) + (\cos^2 x)' \cdot \operatorname{Arccos}(\sqrt{\cos^2 x}) = 2\sin(x)\cos(x) \cdot x - 2\sin(x)\cos(x) \cdot x = 0.$$

La dérivée de G est nulle sur l'intervalle $[0, \frac{\pi}{2}]$, la fonction G est donc constante sur cet intervalle. Pour calculer cette constante, donnons à x la valeur particulière $\frac{\pi}{2}$:

$$F(\frac{\pi}{2}) = \int_0^1 \operatorname{Arcsin}(\sqrt{t}) dt + \int_0^0 \operatorname{Arccos}(\sqrt{t}) dt = \int_0^1 \operatorname{Arcsin}(\sqrt{t}) dt$$

qu'on calcule à la question suivante.

2. D'une part, en posant le changement de variable $t=u^2$ qui est bien de classe \mathcal{C}^1 , avec $dt=2u\,du$:

$$\int_0^1 \operatorname{Arcsin}(\sqrt{t}) dt = \int_0^1 \operatorname{Arcsin}(u) 2u du.$$

D'autre part, en posant le changement de variable $u = \sin(\theta)$ qui est bien de classe \mathcal{C}^1 , avec $du = \cos(\theta) d\theta$:

$$\int_0^1 u \cdot \operatorname{Arcsin}(u) \, du = \int_0^{\pi/2} \sin \theta \cdot \theta \cdot \cos(\theta) \, d\theta = \frac{1}{2} \int_0^{\pi/2} \theta \cdot \sin(2\theta) \, d\theta.$$

Puis on intègre par parties, les fonctions $\theta\mapsto\theta$ et $\theta\mapsto\frac{-\cos2\theta}{2}$ étant bien de classe \mathcal{C}^1 :

$$\int_0^1 u \cdot \operatorname{Arcsin}(u) \, du = \frac{1}{2} \left[\theta \cdot \frac{-\cos 2\theta}{2} \right]_0^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} 1 \cdot \frac{-\cos 2\theta}{2} \, d\theta = \frac{1}{2} \left[\theta \cdot \frac{-\cos 2\theta}{2} + \frac{\sin 2\theta}{4} \right]_0^{\pi/2} = \frac{\pi}{8}.$$

On conclut : $\forall x \in [0, \pi/2], \ G(x) = \frac{\pi}{4}.$

Exercice 2. Soit
$$F(x) = \int_{x}^{2x} \frac{1}{t - \ln(t)} dt$$
.

1. Montrer que la fonction F est dérivable sur $]0, +\infty[$ et que, pour tout x > 0,

$$F'(x) = \frac{\ln(2) - \ln(x)}{[2x - \ln(2x)] [x - \ln(x)]}.$$

- 2. Montrer que, pour tout x strictement positif, $0 \le F(x) \le x$.
- 3. Déterminer un équivalent de $\frac{1}{t-\ln(t)} \frac{1}{t}$ quand t tend vers $+\infty$ et calculer $\int_x^{2x} \frac{\ln t}{t^2} dt$ pour tout x > 0.
- 4. Étudier les limites en 0 et en $+\infty$ de la fonction F.
- 1. Pour tout t>0, $\ln t \le t-1$ par concavité du logarithme. D'où $t-\ln t \ge 1$

(Autre méthode — Soit, pour tout t>0, $g(t)=t-\ln(t)$. La fonction g est dérivable et $g'(t)=1-\frac{1}{t}=\frac{t-1}{t}$. D'où le tableau des variations de g:

t	0		1	
g'(t)		_	0	+
g(t)		×	1	7

Donc, pour tout t > 0, g(t) est supérieur ou égal à 1.)

Ainsi la fonction $t\mapsto \frac{1}{t-\ln(t)}$ est continue sur [x,2x]. Elle possède donc une primitive G: la fonction G est dérivable sur $]0,+\infty[$ et $G'(t)=\frac{1}{t-\ln(t)}$ pour tout $t\in]0,+\infty[$. Alors $\int_x^{2x}\frac{1}{t-\ln(t)}\;dt=G(2x)-G(x),$ d'où F(x)=G(2x)-G(x). La fonction F est dérivable (car G est dérivable) et

$$\forall x > 0, \ F'(x) = 2G'(2x) - G'(x) = 2\frac{1}{2x - \ln(2x)} - \frac{1}{x - \ln(x)} = \frac{\ln(2) - \ln(x)}{[2x - \ln(2x)][x - \ln(x)]}$$

- 2. De $t \ln t \ge 1$, on tire que $0 \le \frac{1}{t \ln t} \le 1$. Par croissance de l'intégrale, $0 \le \int_x^{2x} \frac{1}{t \ln(t)} dt \le \int_x^{2x} 1 dt = 2x x$. Donc $0 \le F(x) \le x$.
- 3. On met en facteur le terme dominant : $\frac{1}{t \ln(t)} \frac{1}{t} = \frac{1}{t} \cdot \left[\frac{1}{1 \frac{\ln t}{t}} 1 \right]$. Puis on fait un D.L. : $\frac{\ln t}{t} \to 0$, d'où $\frac{1}{1 \frac{\ln t}{t}} = 1 + \frac{\ln t}{t} + \frac{\ln t}{t} \varepsilon(t)$, où $\varepsilon(t)$ tend vers zéro quand t tend vers $+\infty$. D'où $\frac{1}{t \ln(t)} \frac{1}{t} = \frac{\ln t}{t^2} \cdot [1 + \varepsilon(t)]$. Donc $\frac{1}{t \ln(t)} \frac{1}{t} \sim \frac{\ln t}{t^2} \text{ si } t \text{ tend vers } +\infty.$

Soit x > 0. On calcule $\int_x^{2x} \frac{\ln t}{t^2} dt$ en intégrant par parties : les fonctions $u: t \mapsto \ln t$ et $v: t \mapsto -\frac{1}{t}$ sont de classe \mathcal{C}^1 , d'où

$$\int_{x}^{2x} uv' = [uv]_{x}^{2x} - \int_{x}^{2x} u'v = \left[-\frac{\ln t}{t} \right]_{x}^{2x} + \int_{x}^{2x} \frac{1}{t^{2}} dt = \left[-\frac{\ln t}{t} \right]_{x}^{2x} + \left[-\frac{1}{t} \right]_{x}^{2x} = \frac{\ln x}{x} + \frac{1}{x} - \frac{\ln(2x)}{2x} - \frac{1}{2x}.$$

4. De $0 \le F(x) \le x$, on tire grâce au théorème des gendarmes : $\lim_{x \to 0^+} F(x) = 0^+$.

Pour t assez grand (c'est-à-dire pour tout t supérieur à un certain T):

- d'une part $\ln(t) \geq 0$, d'où $\frac{1}{t \ln(t)} \frac{1}{t} \geq 0$;

– d'autre part,
$$1 + \varepsilon(t) \le 2$$
 (car $\varepsilon(t)$ tend vers zéro quand t tend vers $+\infty$). Donc $\exists T > 0, \ \forall t \ge T, \ 0 \le \frac{1}{t - \ln(t)} - \frac{1}{t} \le 2 \cdot \frac{\ln t}{t^2}$.

Par croissance de l'intégrale, si $x \ge T$, $0 \le \int_x^{2x} \left(\frac{1}{t - \ln(t)} - \frac{1}{t}\right) dt \le 2\left[\frac{\ln x}{x} + \frac{1}{x} - \frac{\ln(2x)}{2x} - \frac{1}{2x}\right]$, donc (théorème des gendarmes) $\int_x^{2x} \left(\frac{1}{t - \ln(t)} - \frac{1}{t} \right) dt$ tend vers 0 quand x tend vers $+\infty$. Autrement dit : $F(x) - \ln 2$ tend vers zéro, donc

F(x) tend vers $\ln(2)$ si x tend vers $+\infty$.

Exercice 3. Soit, pour chaque $n \in \mathbb{N}^*$, $S_n = \sum_{n=1}^n \sum_{q=1}^n \frac{pq}{p+q}$.

- 1. \triangleright Réviser les sommes de Riemann. Montrer que $u_n = \sum_{n=1}^n \frac{p}{p+n}$ est équivalent à $n(1-\ln 2)$.
- 2. Montrer que, pour tout $n \geq 2$, $S_n S_{n-1} = 2nu_n \frac{n}{2}$. En déduire un équivalent de S_n .
- 1. Pour tout $n \in \mathbb{N}^*$, $\frac{u_n}{n} = \frac{1}{n} \sum_{r=1}^{n} \frac{\frac{p}{n}}{\frac{p}{n}+1}$ est une somme de Riemann de la fonction $[0,1] \to \mathbb{R}$, $x \mapsto \frac{x}{x+1}$ qui est <u>continue</u> sur le <u>segment</u> [0, 1], d'où $\frac{u_n}{n} \xrightarrow[n \to \infty]{} \int_0^1 \frac{x}{x+1} dx = 1 - \ln 2$. Donc $u_n \sim n(1 - \ln 2)$.
- 2. Pour tout $n \in \mathbb{N}^*$, $S_n S_{n-1} = 2\sum_{n=1}^n \frac{np}{p+n} \frac{n}{2} = 2nu_n \frac{n}{2}$, d'où $S_n S_{n-1} \sim 2n^2(1 \ln 2)$. On sort le télescope : $S_n = \frac{1}{2} + \sum_{k=2}^n (S_n - S_{n-1})$ pour tout $n \ge 2$. Or $S_n - S_{n-1} \sim 2n^2(1 - \ln 2)$ qui ne change pas de signe, d'où : les deux séries divergent et, par sommation des équivalents ▷ théorème 14 du chapitre I,

$$S_n \sim 2(1 - \ln 2) \sum_{k=2}^{n} k^2 \sim 2(1 - \ln 2) \frac{n^3}{3}.$$

Exercice 4. Montrer que ces intégrales convergent et les calculer :

$$A = \int_0^{+\infty} e^{-\sqrt{x}} dx \qquad B = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2} \qquad C = \int_0^1 \frac{\ln(1-t)}{(1+t)^2} dt$$

Exercice 5. Etudiez la convergence des intégrales suivantes :

$$D = \int_0^1 \frac{\ln(x)}{\sqrt{x}} dx \qquad E = \int_1^{+\infty} \frac{\ln(x)}{\sqrt{x}} dx$$

$$F = \int_7^{+\infty} e^{-x} \ln(x) dx \qquad G = \int_0^7 e^{-x} \ln(x) dx$$

$$H = \int_0^1 \frac{e^{\sin t}}{t} dt \qquad I = \int_1^{+\infty} \frac{e^{\sin t}}{t} dt$$

$$J = \int_1^{+\infty} \frac{\sin t}{\sqrt{t} + \sin t} dt \qquad K = \int_0^{+\infty} e^{-x^2} dx$$

Exercice 6. Trouver une condition nécessaire et suffisante sur le réel α pour que l'intégrale

$$\int_0^{+\infty} x^{\alpha} (1 - e^{-1/\sqrt{x}}) \, dx$$

converge.

• La fonction $x \mapsto x^{\alpha}(1 - e^{-1/\sqrt{x}})$ est continue positive sur $]0, +\infty[$.

• Comme $x^{\alpha}(1-e^{-1/\sqrt{x}}) \sim x^{\alpha}$ quand $x \to 0$, l'intégrale $\int_0^1 x^{\alpha}(1-e^{-1/\sqrt{x}}) \, dx$ converge si et seulement si $\alpha > -1$.
• Comme $x^{\alpha}(1-e^{-1/\sqrt{x}}) \sim x^{\alpha}$ quand $x \to 0$, l'intégrale $\int_1^+ x^{\alpha}(1-e^{-1/\sqrt{x}}) \, dx$ converge si et seulement si $\alpha < -1/2$.

Conclusion:

$$\int_0^{+\infty} x^{\alpha} (1 - e^{-1/\sqrt{x}}) \, dx \text{ converge } \iff -1 < \alpha < -\frac{1}{2} \cdot$$

Exercice 7. On note $H_n = \sum_{k=1}^n \frac{1}{k}$ pour chaque $n \in \mathbb{N}^*$ et on rappelle que $H_n - \ln(n)$ tend vers un réel γ appelé la constante d'Euler. Soit, pour tout réel t > 0,

$$f(t) = \frac{1}{t} - \left| \frac{1}{t} \right|.$$

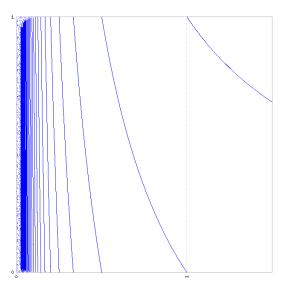
1. Représenter graphiquement la fonction f et justifier qu'elle est continue par morceaux sur $]0,+\infty[$.

2. Montrer que l'intégrale $\int_0^1 f(t) dt$ est convergente.

3. Calculer, pour chaque entier $n \in \mathbb{N}^*$, le réel $I_n = \int_{1/n}^1 f(t) dt$.

4. En déduire la valeur de l'intégrale $\int_0^1 f(t) dt$.

^{1.} La fonction f est cpm sur $]0, +\infty[$ car (c'est la définition) elle est cpm sur chaque segment inclus dans $]0, +\infty[$. En effet, un tel segment contient un nombre fini de discontinuités en des abscisses $t_n = \frac{1}{n}$. Et, en chaque t_n , la fonction vaut $f(\frac{1}{n}) = 0$, a une limite à gauche égale à 0 et une limite à droite égale à 1.



2. $\forall t > 0, \ 0 \le f(t) \le 1$. Or l'intégrale $\int_0^1 1 \, dt$ converge. Donc l'intégrale $\int_0^1 f(t) \, dt$ converge aussi.

- 3. Soit $n \in \mathbb{N}^*$: $\int_{1/n}^1 f(t) dt = \int_{1/n}^1 \frac{1}{t} dt \int_{1/n}^1 \left\lfloor \frac{1}{t} \right\rfloor dt$. La première intégrale vaut $\ln(n)$. La seconde vaut $\sum_{k=1}^{n-1} \int_{1/(k+1)}^{1/k} k dt = \sum_{k=1}^{n-1} k \left(\frac{1}{k} \frac{1}{k+1} \right) = \sum_{k=1}^{n-1} \frac{1}{k+1} = H_n 1$. Donc $I_n = 1 + \ln(n) H_n$.
- 4. D'après la première question, $I_n \underset{n \to \infty}{\longrightarrow} \int_0^1 f(t) dt$. D'après la seconde question, $I_n \underset{n \to \infty}{\longrightarrow} 1 \gamma$. Donc $\int_0^1 f(t) dt = 1 \gamma$ par unicité de la limite.

Exercice 8. On étudie la fonction $F:]-\infty, 1[\to \mathbb{R}, \ x\mapsto \int_0^x \frac{\ln(1-t)}{t} dt$ appelée le **dilogarithme**.

- 1. Montrer que l'intégrale $\int_0^1 \frac{\ln(1-t)}{t} dt$ est convergente.
- 2. On note $\lambda = -\int_0^1 \frac{\ln(1-t)}{t} dt$. Montrer que l'intégrale $\int_0^{+\infty} \frac{x}{\mathrm{e}^x 1} dx$ converge et qu'ell est égale à λ .
- 3. Pour chaque $k \in \mathbb{N}^*$, montrer que l'intégrale $\int_0^{+\infty} x e^{-kx} dx$ converge et la calculer.
- 4. En déduire que, pour chaque $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k^2} = \int_0^{+\infty} x \, \frac{1 \mathrm{e}^{-nx}}{\mathrm{e}^x 1} \, dx$.
- 5. Montrer que, pour chaque $n \in \mathbb{N}^*$, $0 \le \lambda \sum_{k=1}^n \frac{1}{k^2} \le \frac{1}{n}$. Qu'en déduire?
- 1. L'intégrale I= $\int_0^1 \frac{\ln(1-t)}{t} dt$ est impropre en 0 et en 1. Elle converge si, et seulement si, les deux intégrales $I_1 = \int_0^{1/2} \frac{\ln(1-t)}{t} dt$ et $I_2 = \int_{1/2}^1 \frac{\ln(1-t)}{t} dt$ convergent.

L'intégrale I_1 est impropre en 0. Or $\ln(1-t) \underset{t\to 0}{\sim} -t$, d'où $\frac{\ln(1-t)}{t} \underset{t\to 0}{\longrightarrow} -1$. D'où l'intégrale I_1 converge car elle est faussement impropre.

L'intégrale I_2 est impropre en 1. Or $\frac{\ln(1-t)}{t} \sim \ln(1-t)$ et l'intégrale $\int_{1/2}^1 \ln(1-t) dt$ converge car $\int_{1/2}^c \ln(1-t) dt = [(t-1)\ln(1-t)-t]_{1/2}^c \longrightarrow -\frac{1}{2} - \frac{1}{2}\ln 2$. Donc l'intégrale I est convergente.

2. Le CDV $x=-\ln(1-t)$, de classe \mathcal{C}^1 et strictement monotone de [0,1[vers $[0,+\infty[$, d'où :

les intégrales $-\int_0^1 \frac{\ln(1-t)}{t} dt$ et $-\int_0^{+\infty} \frac{-x}{1-e^{-x}} e^{-x} dx = \int_0^{+\infty} \frac{x}{e^x-1} dx$ ont la même nature, qui est de converger d'après la question 1. Et elles sont donc égales. \triangleright Relire le théorème de CDV : il énonce que (i) les natures sont les mêmes et (ii) les valeurs sont égales (si cette nature est de converger).

- 3. On fait une IPP : $\int_0^a x \mathrm{e}^{-kx} \, dx = \left[x \frac{\mathrm{e}^{-kx}}{-k} \right]_0^a \int_0^a \frac{\mathrm{e}^{-kx}}{-k} \, dx \xrightarrow[a \to +\infty]{} \frac{1}{k^2} \text{ par croissances comparées. Donc l'intégrale converge et vaut } \frac{1}{k^2} \text{ pour tout } k \in \mathbb{N}^*.$
- 4. $\sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=1}^{n} \int_{0}^{+\infty} x e^{-kx} dx = \int_{0}^{+\infty} x \left(\sum_{k=1}^{n} e^{-kx} \right) dx.$

Or, pour tout x > 0, $\sum_{k=1}^{n} e^{-kx} = e^{-x} \frac{1 - e^{-nx}}{1 - e^{-x}}$ en reconnaissant une somme géométrique de raison $e^{-x} \neq 1$. Donc $\sum_{k=1}^{n} \frac{1}{k^2} = \int_{0}^{+\infty} x \frac{1 - e^{-nx}}{e^x - 1} dx$, cette dernière intégrale étant impropre en 0.

5. Soit $x \ge 0$. D'après le TAF, $\exists \in]0, x[$, $e^x - e^0 = e^c \cdot (x - 0)$. Or $e^c \ge 1$. Donc $x \le e^x - 1$.

(Autre méthode : dresser le tableau des variations de la fonction $[0, +\infty[\to \mathbb{R}, \ x \mapsto e^x - x - 1 \ pour montrer qu'elle est positive. Ou encore : utiliser la convexité de la fonction exp.)$

6.
$$\lambda - \sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{+\infty} \frac{x}{e^x - 1} dx - \int_0^{+\infty} x \frac{1 - e^{-nx}}{e^x - 1} dx = \int_0^{+\infty} x \frac{e^{-nx}}{e^x - 1} dx.$$

D'après la question précédente, pour tout $x>0, x\leq e^x-1,$ d'où $0\leq \frac{x}{e^x-1}\leq 1$ en divisant par $e^x-1>0.$ D'où $0 \leq \int_0^{+\infty} x \, \frac{\mathrm{e}^{-nx}}{\mathrm{e}^x - 1} \, dx \leq \int_0^{+\infty} \mathrm{e}^{-nx} \, dx = \frac{1}{n}. \text{ Donc, pour chaque } n \in \mathbb{N}^*, \, 0 \leq \lambda - \sum_{k=1}^n \frac{1}{k^2} \leq \frac{1}{n}.$

D'après la question précédente et en utilisant le théorème des gendarmes, la série $\sum \frac{1}{k^2}$ converge et $\lambda = \sum_{k=1}^{\infty} \frac{1}{k^2}$

Exercice 9. Soit $f : x \in \mathbb{R}_+^* \mapsto \int_1^x \frac{e^t}{t} dt$.

Étudier la nature de l'intégrale $\int_0^1 \frac{e^t-1}{t} dt$. En déduire un équivalent de f(x) quand x tend vers 0^+ . Retrouver cet équivalent en utilisant la > proposition 15 du chapitre III.

L'idée est de comparer f(x) à $\int_1^x \frac{dt}{t} = \ln x$. Or

$$g(x) = f(x) - \ln x = \int_{1}^{x} \frac{e^{t} - 1}{t} dt$$

et la fonction $t\mapsto \frac{e^t-1}{t}$ est prolongeable par continuité en 0 (par la valeur 1), Or l'intégrale $\int_0^1 \frac{e^t-1}{t}\,dt$, impropre en 0, converge car elle est faussement impropre (en effet, $\frac{e^t-1}{t}$ tend vers 1 quand t vers 0). Posons donc $\ell=\int_0^1 \frac{e^t-1}{t}\,dt$. Première rédac : D'où $f(x)=\ln x-\ell+o(1)=\ln x+o(\ln x)$. Donc $f(x)\sim\ln x$ quand x tend vers 0^+ . Deuxième rédac : D'où $f(x)=\ln x-\ell+o(1)$, d'où $\frac{f(x)}{\ln x}=1+\frac{-\ell+o(1)}{\ln x}\xrightarrow[x\to 0^+]{}1+0$. Donc $f(x)\sim\ln x$ quand x tend vers 0^+ .

Exercice 10. Soient, pour chaque $n \in \mathbb{N}$,

$$a_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{t} dt$$
 et $b_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{\sin t} dt$.

- 1. Montrer que ces intégrales généralisées sont convergentes.
- 2. Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ est constante. Quelle est la valeur de cette constante?
- 3. Montrer que l'intégrale généralisée $I = \int_{0}^{+\infty} \frac{\sin t}{t} dt$ est convergente.
- 4. Montrer que $\lim_{n\to\infty} a_n = I$.
- 5. (Lemme de Riemann-Lebesgue) Soit f une fonction de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$. Montrer que :

$$\lim_{\lambda \to +\infty} \int_0^{\pi/2} f(t) \sin(\lambda t) dt = 0.$$

6. Soit f la fonction définie sur $\left|0,\frac{\pi}{2}\right|$ par

$$f(0) = 0$$
 et $f(t) = \frac{1}{\sin t} - \frac{1}{t} \text{ si } t \neq 0.$

Montrer que f est de classe C^1 .

- 7. Etudier $\lim_{n\to\infty} (b_n a_n)$.
- 8. (Intégrale de Dirichlet) Montrer que $\int_{0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$

$$\int_0^{+\infty} \frac{\sin t}{t} \, dt = \frac{\pi}{2}$$

- 1. Les deux intégrales sont impropres en 0. Or $\frac{\sin(2n+1)t}{\sin t} \sim \frac{\sin(2n+1)t}{t} \sim 2n+1$, d'où : ces deux fonctions sont continues sur $\left]0,\frac{\pi}{2}\right]$ et ont une limite finie en 0^+ , donc les intégrales a_n et b_n sont faussement impropres, donc convergentes.
- 2. $b_{n+1} b_n = \int_0^{\pi/2} \frac{\sin(2n+3)t \sin(2n+1)t}{\sin t} dt$. Or $\sin(2n+3)t \sin(2n+1)t = 2\sin t \cdot \cos(2n+2)t$, d'où $b_{n+1} b_n = 2\int_0^{\pi/2} \cos(2n+2)t dt = 0$. Donc la suite (b_n) est constante (et égale à $b_0 = \frac{\pi}{2}$).
- 3. L'intégrale I est impropre en 0 et en $+\infty$: Elle converge si, et seulement si, les deux intégrales $I_0 = \int_0^\pi \frac{\sin t}{t} dt$ et $I_1 = \int_\pi^{+\infty} \frac{\sin t}{t} dt$ convergent.

L'intégrale I_0 est impropre en 0. Elle converge car c'est l'intégrale a_0 de la question 1

L'intégrale I_1 est impropre en $+\infty$. On intègre par parties : $\int_{\pi}^{x} \frac{\sin t}{t} dt = \left[\frac{-\cos t}{t} \right]_{\pi}^{x} - \int_{\pi}^{x} \frac{\cos t}{t^2} dt$.

 $\text{Or } \left[\frac{-\cos t}{t} \right]_{\pi}^{x} \xrightarrow{\to \infty} \frac{1}{\pi} \text{ et l'intégrale impropre } \int_{\pi}^{+\infty} \frac{\cos t}{t^{2}} \, dt \text{ converge car elle converge absolument car } \left| \frac{\cos t}{t^{2}} \right| \leq \frac{1}{t^{2}}. \text{ D'où l'intégrale } I_{1} \text{ converge.}$

- 4. Dans cette intégrale impropre en 0, on pose le changement de variable (de classe \mathcal{C}^1 et strictement monotone) u=(2n+1)t $(du=(2n+1)\,dt,\,t$ va de 0 à $\pi/2$, d'où u va de 0 à $(2n+1)\pi/2$) : $a_n=\int_0^{(2n+1)\pi/2}\frac{\sin u}{u}\,du \underset{n\to\infty}{\longrightarrow} I$ d'après la question 3.
- 5. On intègre par parties (c'est possible car f' est continue) :

 $\int_0^{\pi/2} f(t) \sin(\lambda t) \, dt = \left[-\frac{1}{\lambda} f(t) \cos(\lambda t) \right]_0^{\pi/2} + \frac{1}{\lambda} \int_0^{\pi/2} f'(t) \cos(\lambda t) \, dt.$

Or $-\frac{1}{\lambda}\left[f(\pi/2)\cos(\lambda\pi/2)-f(0)\right]\underset{\lambda\to+\infty}{\longrightarrow}0$ car $\lambda\mapsto\left[f(\pi/2)\cos(\lambda\pi/2)-f(0)\right]$ est une fonction bornée.

Et $\frac{1}{\lambda} \int_0^{\pi/2} f'(t) \cos(\lambda t) dt \xrightarrow[\lambda \to +\infty]{} 0$ car $\lambda \mapsto \int_0^{\pi/2} f'(t) \cos(\lambda t) dt$ est une fonction bornée.

En effet $\left| \int_0^{\pi/2} f'(t) \cos(\lambda t) \, dt \right| \le \int_0^{\pi/2} |f'(t) \cos(\lambda t)| \, dt \le \int_0^{\pi/2} |f'(t)| \, dt.$

6. $\frac{1}{\sin t} - \frac{1}{t} = \frac{t - \sin t}{t \sin t} \underset{t \to 0}{\sim} \frac{t^3/6}{t^2} \underset{t \to 0}{\sim} t/6 \xrightarrow[t \to 0]{} 0$. Donc f est continue en 0. Ailleurs aussi.

 $\frac{f(0+h)-f(0)}{h} = \frac{\frac{1}{\sin h}-\frac{1}{h}-0}{h} \overset{DL}{=} \frac{\frac{1}{1-h^2/6+h^2\varepsilon(h)}-1}{h^2} = \frac{1}{6}+\varepsilon(h) \underset{h \rightarrow 0}{\longrightarrow} \frac{1}{6}. \text{ D'où } f \text{ est dérivable en } 0 \text{ et } f'(0) = \frac{1}{6}.$

Pour tout $t \neq 0$, $f'(t) = \frac{-\cos t}{\sin^2 t} + \frac{1}{t^2}$. D'où $f'(t) \stackrel{DL}{=} -\frac{1-t^2/2+t^2\varepsilon(t)}{(t-t^3/6+t^3\varepsilon(t))^2} + \frac{1}{t^2} = -\frac{1-t^2/2+t^2\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^2/2+t^4\varepsilon(t)}{t^2-t^4/3+t^4\varepsilon(t)} + \frac{1-t^4/2+t^4\varepsilon(t)}{t^4-t^4\varepsilon(t)} + \frac{1-t^4/2+t^4\varepsilon(t)}{t^4-t^4\varepsilon(t)} + \frac{1-t^4/2+t^4\varepsilon(t)}{t^4-t^4\varepsilon(t)} + \frac{1-t^4/2+t^4\varepsilon(t)}{t^4-t^4\varepsilon(t)} + \frac{1-t^4/2+t$

Autre méthode — on utilise le théorème de la limite de la dérivée : avec la même preuve que ci-dessus, la fonction f est continue en 0. Avec la même preuve que ci-dessus, $f'(t) \underset{t \to 0}{\longrightarrow} \frac{1}{6}$. Donc la fonction f est dérivable en 0 et sa dérivée est continue en 0.

- 7. $b_n a_n = \int_0^{\pi/2} f(t) \sin(2n+1)t \, dt \xrightarrow[n \to \infty]{} 0$ d'après les deux questions précédentes.
- 8. On a montré que : a_n tend vers I, b_n est constant et égal à $\frac{\pi}{2}$, $b_n a_n$ tend vers 0. Donc $I = \frac{\pi}{2}$.

Exercice 11. 1. Montrer que les intégrales généralisées

$$A = \int_0^1 \frac{\ln t}{t - 1} dt$$
 et $B = \int_0^1 \frac{(\ln t)^2}{1 - t} dt$

sont convergentes.

- 2. Montrer que, pour chaque $n \ge 2$, le réel $a_n = \int_0^1 \frac{x^n}{1+x+\cdots+x^{n-1}} dx$ est égal à $\frac{1}{n} \int_0^1 \frac{t^{1/n} (1-t^{1/n})}{1-t} dt$.
- 3. Soient $t \in]0,1]$ et, pour chaque $x \in \mathbb{R}$, $f(x) = t^x (1-t^x)$. Montrer que la fonction f est deux fois dérivable. Calculer f(0), f'(0) et montrer que, pour tout $x \ge 0$, $|f''(x)| \le 3(\ln t)^2$.

4. ▷ Réviser la formule de Taylor avec reste intégral.

En déduire que, pour tout $t \in]0,1]$,

$$\left| t^{1/n} \left(1 - t^{1/n} \right) + \frac{1}{n} \ln t \right| \le \frac{3(\ln t)^2}{2n^2}$$

- 5. Montrer que $\left|a_n \frac{A}{n^2}\right| \leq \frac{3B}{2n^3}$. En déduire un équivalent de a_n .
- 1. L'intégrale $A = \int_0^1 \frac{\ln t}{t-1} dt$ est impropre en 0 et en 1 : soient $A_1 = \int_0^{1/2} \frac{\ln t}{t-1} dt$ et $A_2 = \int_{1/2}^1 \frac{\ln t}{t-1} dt$. L'intégrale A converge si, et seulement si, A_1 et A_2 convergent.

 $\frac{\ln t}{t-1} \underset{t \to 0}{\sim} - \ln t \text{ (qui ne change pas de signe), or } \int_0^{1/2} \ln t \, dt \text{ converge, d'où l'intégrale } A_1 \text{ converge aussi.}$

L'intégrale A_2 converge car elle est faussement impropre en 1. En effet, $\frac{\ln t}{t-1} = \frac{\ln 1 - u}{-u}$ en posant t = 1 - u pour se ramener en 0. Et $\frac{\ln 1 - u}{-u} = \frac{-u + o(u)}{-u} = -1 + o(1) \xrightarrow{u \to 0} 1$.

• L'intégrale B converge si, et seulement si, les intégrales $B_1 = \int_0^{1/2} \frac{\ln^2 t}{1-t} dt$ et $B_2 = \int_{1/2}^1 \frac{\ln^2 t}{1-t} dt$ convergent.

 $\frac{\ln^2 t}{1-t} \underset{t \to 0}{\sim} \ln^2 t. \text{ Or l'intégrale } \int_x^{1/2} \ln^2 t \, dt = [t \ln^2 t]_x^{1/2} - 2 \int_x^{1/2} \ln t \, dt \text{ car les fonctions } t \mapsto t \text{ et } t \mapsto \ln^2 t \text{ sont de classe } \mathcal{C}^1.$ Or $[t \ln^2 t]_x^{1/2}$ a une limite finie quand x tend vers 0 par croissances comparées. D'où l'intégrale B_1 est de même nature que $\int_0^{1/2} \ln t \, dt$, qui est convergente. Donc l'intégrale B_1 converge.

 $B_2 = \int_0^{1/2} \frac{\ln^2(1-x)}{x} dx. \text{ Or } \frac{\ln^2(1-x)}{x} \underset{x \to 0}{\sim} x \text{ tend vers 0. D'où l'intégrale } B_2 \text{ est faussement impropre, donc elle converge.}$ 2. L'intégrale $a_n = \int_0^1 \frac{(1-x)x^n}{1-x^n} dx$ est impropre en 1. On pose le changement de variable $t = x^n$ ($dt = nx^{n-1} dx$, x va de 0

à 1, d'où t va de 0 à 1) qui est bien de classe \mathcal{C}^1 et strictement monotone. D'où $a_n = \frac{1}{n} \int_0^1 \frac{t^{1/n} (1 - t^{1/n})}{1 + t} dt$.

Pour chaque $x \in \mathbb{R}$, $f(x) = t^x (1 - t^x) = e^{x \ln t} (1 - e^{x \ln t})$, d'où f(0) = 0.

La fonction f est deux fois dérivable sur \mathbb{R} (car c'est un produit de fonctions deux fois dérivables) et $f'(x) = (1 - 2t^x)t^x \ln t$,

Puis $f''(x) = t^x (1 - 4t^x) \ln^2 t$. Or, pour tout $x \ge 0$, $0 \le t^x = e^{x \ln t} \le 1$ car $t \in]0,1]$ et $x \ge 0$, d'où $-3 \le 1 - 4t^x \le 1$, donc $|f''(x)| \le 3\ln^2 t.$

4. La fonction f est de classe \mathcal{C}^2 (car sa dérivée seconde est continue), d'où (formule de Taylor avec reste intégral) :

 $f(1/n) = f(0) + \frac{1}{n}f'(0) + \int_{0}^{1/n} \left(\frac{1}{n} - x\right)f''(x) dx$. Donc, pour tout $t \in]0,1]$:

$$\left| t^{1/n} \left(1 - t^{1/n} \right) + \frac{1}{n} \ln t \right| = \left| \int_0^{1/n} \left(\frac{1}{n} - x \right) f''(x) \, dx \right|$$

$$\leq \int_0^{1/n} \left(\frac{1}{n} - x \right) \left| f''(x) \right| \, dx$$

$$\leq 3(\ln t)^2 \int_0^{1/n} \left(\frac{1}{n} - x \right) \, dx$$

$$\leq \frac{3(\ln t)^2}{2n^2}.$$

5. On sait que $\left|t^{1/n}(1-t^{1/n})+\frac{1}{n}\ln t\right| \leq \frac{3(\ln t)^2}{2n^2}$ pour tout $t\in]0,1]$

On divise par 1-t>0: $\left|\frac{t^{1/n}(1-t^{1/n})}{1-t} + \frac{1}{n}\frac{\ln t}{1-t}\right| \le \frac{3}{2n^2}\frac{(\ln t)^2}{1-t}$ pour tout $t \in]0,1[$.

On intègre (c'est possible car toutes ces intégrales convergent d'après les questions précédentes) :

$$\int_0^1 \left| \frac{t^{1/n} \left(1 - t^{1/n} \right)}{1 - t} + \frac{1}{n} \frac{\ln t}{1 - t} \right| dt \le \int_0^1 \frac{3}{2n^2} \frac{(\ln t)^2}{1 - t} dt.$$

$$\text{D'où} \left| \int_0^1 \frac{t^{1/n} \left(1 - t^{1/n} \right)}{1 - t} \, dt + \int_0^1 \frac{1}{n} \frac{\ln t}{1 - t} \, dt \right| \leq \int_0^1 \frac{3}{2n^2} \frac{(\ln t)^2}{1 - t} \, dt.$$

On divise par $n:\left|a_n-\frac{A}{n^2}\right|\leq \frac{3B}{2n^3}.$ Puis par $\frac{A}{n^2}$ qui est strictement positif : $\left|\frac{a_n}{A/n^2}-1\right|\leq \frac{3B}{2An}\underset{n\to\infty}{\longrightarrow} 0.$ D'où $\frac{a_n}{A/n^2}-1$ tend vers 0 d'après le théorème des gendarmes. Autrement dit, $\frac{a_n}{A/n^2}$ tend vers 1. Donc $a_n \sim A \over n^2$.

1. Quelle est la nature de l'intégrale généralisée $\int_{2}^{+\infty} \ln^{\alpha}(t) dt$, pour tout $\alpha \in \mathbb{R}$? Exercice 12.

- 2. Après une intégration par parties, déterminer un équivalent, quand x tend vers $+\infty$, de $\int_0^x \ln^{\alpha}(t) dt$.
- 1. Soit $\alpha \in \mathbb{R} : \frac{\ln^{\alpha}(t)}{1/t} = t \ln^{\alpha}(t) \underset{t \to +\infty}{\longrightarrow} +\infty$ sans forme indéterminée si $\alpha \geq 0$ et par croissances comparées si $\alpha < 0$. D'où $\frac{1}{t}=o\left(\ln^{\alpha}(t)\right)$ quand t tend vers $+\infty.$ Or $\ln^{\alpha}(t)$ ne change pas de signe au voisinage de $+\infty$ et l'intégrale $\int_{2}^{+\infty}\frac{1}{t}\,dt$ diverge. Donc l'intégrale $\int_2^{+\infty} \ln^{\alpha}(t) dt$ diverge aussi. 2. Soit $x \geq 2$. Les fonctions $u: t \mapsto \ln^{\alpha}(t)$ et $v: t \mapsto t$ sont de classe C^1 , d'où $\int_2^x uv' = [uv]_2^x - \int_2^x u'v$. Donc

$$\int_{2}^{x} \ln^{\alpha}(t) dt = x \ln^{\alpha}(x) - 2 \ln^{\alpha}(2) - \alpha \int_{2}^{x} \ln^{\alpha - 1}(t) dt.$$

Or $\ln^{\alpha-1}(t) = o(\ln^{\alpha}(t))$ quand t tend vers $+\infty$. De plus $\ln^{\alpha}(t)$ est positif au voisinage de $+\infty$. Enfin l'intégrale $\int_{2}^{+\infty} \ln^{\alpha}(t) \, dt$ diverge. Donc $\int_{2}^{x} \ln^{\alpha-1}(t) = o\left(\int_{2}^{x} \ln^{\alpha}(t) \, dt\right) >$ proposition 15 du chapitre III. Donc

$$\int_{2}^{x} \ln^{\alpha}(t) dt \underset{x \to +\infty}{\sim} x \ln^{\alpha}(x).$$