D.S. N° 3 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient quatre exercices indépendants.

Dans chaque exercice, on peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

✓ ✓ Exercice 1

Soient $n \in \mathbb{N}^*$, $u_n = \int_0^{\pi/2} x \sin(nx)(\cos x)^n dx$ et, pour tout $t \in]0,1]$, $f_n(t) = \frac{1 - (1-t)^n}{t}$

- 1. Montrer que l'intégrale $I_n = \int_0^1 f_n(t) dt$ est convergente.
- 2. Montrer que $I_n = \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k-1}}{k}$.
- 3. Montrer que $\sum_{n=0}^{\infty} \binom{n}{p} \sin(2px) = 2^n \sin(nx) (\cos x)^n$.
- 4. Montrer que $I_n = \sum_{k=1}^n \frac{1}{k}$.
- 5. Montrer que $u_n = \frac{\pi}{2^{n+2}} I_n$.

 6. En déduire la nature de la série $\sum u_k$.
- 7. Montrer que, pour tout $x \in [0, 1[, -\ln(1-x)] = \sum_{k=1}^{n} \frac{x^k}{k} + R_n(x)$, où $R_n(x) = \int_0^x \frac{t^n}{1-t} dt$.
- **8.** Soit $x \in [0,1[$. Montrer que $R_k(x) \xrightarrow[k \to \infty]{} 0$.

9. Soit
$$x \in [0,1[$$
. En étudiant $(1-x)\sum_{k=1}^{n}I_{k}x^{k}$, montrer que la série $\sum I_{k}x^{k}$ converge et que
$$\underbrace{(1-x)\sum_{k=1}^{n}I_{k}x^{k}}_{\text{final}} = \underbrace{\sum_{k=1}^{n}I_{k}x^{k}}_{\text{final}} = \underbrace{\sum_{k=1}^{n}I_{k}x^{k}}$$

10. En déduire la somme $\sum_{k=1}^{n} u_k$.

Exercice 2

- 1. Pour quelles valeurs du réel α l'intégrale $I(\alpha) = \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt$ converge-t-elle?

 2. Pour quelles valeurs du réel α l'intégrale $\int_0^{\pi/2} \frac{1 \cos(t)}{t^{\alpha+1}} dt$ converge-t-elle?
- **3.** Montrer que, pour tout $\alpha \in [-1,1]$.

$$0 \leqslant \int_0^{\pi/2} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \leqslant \int_0^1 \frac{1 - \cos(t)}{t^2} dt + \int_1^{\pi/2} (1 - \cos(t)) dt.$$

- 2 4. En déduire que $I(\alpha)$ tend vers 1 lorsque α tend vers 0^+ .

 5. Montrer que l'intégrale $J(\alpha) = \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$ converge pour tout réel $\alpha > 0$.
- **6.** L'intégrale J(0) converge-t-elle?
- 7. Montrer que, pour tout $\alpha > 0$, $J(\alpha) = \frac{\alpha}{(\pi/2)^{\alpha+1}} \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha+2}} dt$.
- 1 8. Étudier la limite de $J(\alpha)$ lorsque α tend vers 0 par valeurs supérieures.
 - 9. Justifier que le réel $f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$ est bien défini si $\alpha \in]0,2[$. Étudier la limite de $f(\alpha)$ lorque α tend vers 0 par valeurs supérieures.
- **2** 10. Montrer qu'il existe un réel μ strictement positif tel que : $\frac{1-\cos(t)}{t^2} \ge \mu$ pour tout $t \in]0,\pi]$.
- **11.** Montrer que, pour tout $\alpha \in]0,2[$:

$$f(\alpha) \geqslant \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt.$$

12. En déduire la limite de $f(\alpha)$ quand α tend vers 2 par valeurs inférieures.

10 Exercice 3

1. On définit, pour tout réel x > 0, la fonction f par $f(x) = \int_1^x \frac{\ln t}{1+t^2} dt$.

(a) Étudier, pour chaque réel x > 0, le signe de f(x).

(b) Exprimer, pour tout réel x > 0, $f\left(\frac{1}{x}\right)$ en fonction de f(x).

2. Montrer que les intégrales généralisées

$$\int_{1}^{0} \frac{\ln t}{1+t^2} dt \quad \text{et} \quad \int_{1}^{+\infty} \frac{\ln t}{1+t^2} dt$$

sont convergentes et qu'elles ont la même valeur.

On notera I leur valeur commune, qu'on ne demande pas de calculer.

3. Soit, pour tout x > 0, $g(x) = \int_1^x \frac{\operatorname{Arctan}(t)}{t} dt$.

(a) Exprimer, en fonction du réel I, la limite de g(x) quand x tend vers 0^+ . If P_0 , Arctan (a) $\sim x$ of

(b) Déterminer un équivalent de g(x) quand x tend vers $+\infty$.

4. On pose, pour tout $k \in \mathbb{N}$ et pour tout réel x > 0, $F_k(x) = \int_1^x t^k \cdot \ln(t) dt$.

 \wedge (a) Montrer que, pour tout $n \in \mathbb{N}$ et pour tout réel x > 0,

$$f(x) = \sum_{k=0}^{n} (-1)^k F_{2k}(x) + (-1)^{n+1} \int_{1}^{x} \frac{t^{2n+2} \ln(t)}{1+t^2} dt.$$

 \bigwedge (b) Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $x \in]0,1],$

$$\left| f(x) - \sum_{k=0}^{n} (-1)^k F_{2k}(x) \right| \le F_{2n+2}(x).$$

3 (c) Soit $k \in \mathbb{N}$. Calculer, pour tout réel x > 0, l'intégrale $F_k(x)$ et déterminer $\lim_{x \to 0^+} F_k(x)$. En déduire l'expression de I comme la somme d'une série numérique.

Exercice 4

On s'intéresse aux fonctions $y:\mathbb{R}_+^* \to \mathbb{R}$ vérifiant le système

(S)
$$\begin{cases} \forall x > 0, \quad y(x+1) + y(x) = \frac{1}{x} \\ \lim_{x \to +\infty} y(x) = 0 \end{cases}$$

1. Montrer que, si f et g sont deux solutions du système (S), alors la fonction f-g est 2-périodique. En déduire que f = g.

On note
$$F(x) = \int_{1}^{+\infty} \frac{dt}{t^x(1+t)}$$
.

- 2. Pour quelles yaleurs de x le réel F(x) est-il défini?

 3. Calculer F(1) et $F\left(\frac{1}{2}\right)^{x}$.

 4. Montrer que la fonction $F:]0, +\infty[\to \mathbb{R}, \ x \mapsto F(x)$ est décroissante.

 5. Montrer que $F(x) + F(x+1) = \frac{1}{x}$ pour tout x > 0.

 6. Montrer que $F(x) \xrightarrow[x \to +\infty]{} 0$.
- 7. Montrer que F(x) est équivalent à $\frac{1}{x}$ quand x tend vers 0^+ .

 8. Montrer que F(x) est équivalent à $\frac{1}{2x}$ quand x tend vers $+\infty$.

 9. Soit un réel x > 0. Montrer que la série numérique $\sum_{n+x} \frac{(-1)^n}{n+x}$ co 9. Soit un réel x > 0. Montrer que la série numérique $\sum \frac{(-1)^n}{n+x}$ converge.

On note
$$G(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+x}$$
 pour tout $x \in \mathbb{R}_+^*$.

- 10. Montrer que F(x) = G(x) pour tout x > 0. $G(x) + G(x) = \frac{1}{x}$ $G(x) = \frac{1}{x}$ o_j 11. En déduire la somme $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$.
- 2 12. Déterminer un équivalent du reste $\sum_{n=N+1}^{\infty} \frac{(-1)^n}{n+1}$.