Colle 06 Réduction

BOLLET Alexandre

Exercice 1. Soit E un \mathbb{C} -espace vectoriel de dimension finie, et soient $f, g \in \mathcal{L}(E)$. On souhaite étudier si le fait que $f \circ g$ est diagonalisable entraı̂ne que $g \circ f$ est diagonalisable. On fixe \mathcal{B} une base de E et on désigne par A (resp. B) la matrice de f (resp. g) dans cette base.

- 1. Dans cette question, on suppose f et g inversibles.
 - (a) Démontrer que AB et BA ont le même polynôme caractéristique.
 - (b) Soit λ une valeur propre de $f \circ g$, et soit E_{λ} (resp. F_{λ}) l'espace propre de $f \circ g$ (resp. de $g \circ f$) associé à λ . Démontrer les inclusions

$$g(E_{\lambda}) \subset F_{\lambda}$$
 et $f(F_{\lambda}) \subset E_{\lambda}$.

- (c) Que peut-on en déduire sur les dimensions des espaces E_{λ} et F_{λ} ?
- (d) Montrer que si $f \circ g$ est diagonalisable, alors $g \circ f$ est diagonalisable.
- 2. Dans cette question, on suppose maintenant f et g quelconques.
 - (a) Montrer que si $f \circ g$ a une valeur propre nulle, il en est de même de $g \circ f$.
 - (b) Soit $\alpha \in \mathbb{C} \setminus \{0\}$ tel que $AB \alpha I$ est inversible. On note C son inverse. Vérifier que

$$(BA - \alpha I)(BCA - I) = \alpha I.$$

Que peut-on en déduire pour $det(BA - \alpha I)$?

- (c) Déduire de ce qui précède que $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres.
- (d) Donner un exemple simple de matrices A et B tel que AB est diagonalisable, et BA n'est pas diagonalisable.

Solution 1.

1.a On remarque que $AB = A(BA)A^{-1}$ et donc AB et BA sont semblables : AB et BA ont le même polynôme caractéristique.

1.b Soit $x \in E_{\lambda}$, c'est-à-dire que $f \circ g(x) = \lambda x$. On a

$$g \circ f(g(x)) = g(f \circ g(x)) = g(\lambda x) = \lambda g(x).$$

Ceci prouve que $g(x) \in F_{\lambda}$, et donc que $g(E_{\lambda}) \subset F_{\lambda}$. De même, on montre que $f(F_{\lambda}) \subset E_{\lambda}$.

 $\mathbf{1.c}\ f\ et\ g\ étant\ des\ isomorphismes,\ ils\ conservent\ la\ dimension,\ et\ on\ a\ donc\ :$

$$\dim(g(E_{\lambda})) = \dim(E_{\lambda}) \ et \ \dim(f(F_{\lambda})) = \dim(F_{\lambda}).$$

D'autre part, les inclusions démontrées à la question précédente prouvent que

$$\dim(g(E_{\lambda})) \leq \dim(F_{\lambda}) \ et \ \dim(f(F_{\lambda})) \leq \dim(E_{\lambda}).$$

Si on met tout ensemble, on en déduit que

$$\dim(E_{\lambda}) \leq \dim(F_{\lambda}) \ et \ \dim(F_{\lambda}) \leq \dim(E_{\lambda}).$$

Ainsi, les espaces propres E_{λ} et F_{λ} ont même dimension.

1.d Soient $\lambda_1, \ldots, \lambda_p$ les valeurs propres de $f \circ g$. Alors, puisque $f \circ g$ est diagonalisable, on a

$$\dim(E_{\lambda_1}) + \dots + \dim(E_{\lambda_n}) = n.$$

D'après le résultat de la question précédente, on a aussi

$$\dim(F_{\lambda_1}) + \dots + \dim(F_{\lambda_p}) = n.$$

Ainsi, la somme des dimensions des sous-espaces propres de $g \circ f$ est (au moins) égale à n. C'est bien que $g \circ f$ est diagonalisable.

2.a Si 0 est valeur propre de $f \circ g$, alors det(AB) = 0. Mais det(AB) = det(BA) = 0, et donc 0 est valeur propre de $g \circ f$.

2.b On utilise la relation suivante :

$$(AB - \alpha I)C = I \implies ABC = I + \alpha C.$$

Développant, on trouve :

$$(BA - \alpha I)(BCA - I) = B(ABC)A - BA - \alpha BCA + \alpha I$$
$$= BA + \alpha BCA - BA - \alpha BCA + \alpha I$$
$$= \alpha I.$$

On en déduit que $det(BA - \alpha I)$ est non-nul, puisque

$$\det(BA - \alpha I) \times \det(BCA - I) = \alpha^n \neq 0,$$

et donc que $BA - \alpha I$ est inversible.

2.c On raisonne par contraposée. Si α n'est pas une valeur propre de $f \circ g$, alors $AB - \alpha I$ est inversible, et par la question précédente, $BA - \alpha I$ est inversible, c'est-à-dire que α n'est pas une valeur propre de $g \circ f$. Par contraposée, toute valeur propre de $g \circ f$ est une valeur propre de $f \circ g$. Par symétrie du rôle joué par f et g, $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres.

2.d On va travailler en dimension 2, avec des matrices non-inversibles. Prenons

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \ et \ B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right),$$

de sorte que

$$AB = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \ et \ BA = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right).$$

BA est diagonalisable, tandis que AB ne l'est pas.

CAMBRAY Romain

Exercice 2. Soit n un entier naturel non nul.

Soit A une matrice carrée réelle de taille n.

On note I la matrice identité de taille n.

On pose
$$B = \begin{pmatrix} A & I \\ I & A \end{pmatrix}$$
.

1. Montrer que, pour toute matrice carrée C de taille n :

$$\det\begin{pmatrix} A & C \\ C & A \end{pmatrix} = \det(A+C)\det(A-C).$$

- 2. Calculer le polynôme caractéristique de B en fonction de celui de A.
- 3. Préciser le spectre de B en fonction de celui de A
- 4. Préciser les sous-espaces propres de B en fonction de ceux de A
- 5. On suppose que A est diagonalisable. B est-elle diagonalisable?
- 6. On définit une suite de matrices de la façon suivante :

La matrice A_0 est la matrice nulle de taille $1: A_0 = (0)$.

Soit $k \in \mathbb{N}$. La matrice A_k étant définie, de taille 2^k , on pose :

$$A_{k+1} = \begin{pmatrix} A_k & I_k \\ I_k & A_k \end{pmatrix} \text{ où } I_k \text{ est la matrice identit\'e, de taille } 2^k.$$
 Montrer que la matrice A_k est diagonalisable et préciser son spectre.

Solution 2.

1. On calcule

$$\begin{pmatrix} A & C \\ C & A \end{pmatrix} \begin{pmatrix} I_n & 0 \\ I_n & I_n \end{pmatrix} = \begin{pmatrix} A+C & C \\ A+C & A \end{pmatrix}$$

puis

$$\begin{pmatrix} I_n & 0 \\ -I_n & I_n \end{pmatrix} \begin{pmatrix} A+C & C \\ A+C & A \end{pmatrix} = \begin{pmatrix} A+C & C \\ 0 & A-C \end{pmatrix}$$

On en déduit

$$\det\begin{pmatrix} A & C \\ C & A \end{pmatrix} = \det\begin{pmatrix} A+C & C \\ 0 & A-C \end{pmatrix} = \det(A+B)\det(A-C)$$

- 2. $P_B(X) = P_A(X+1)P_A(X-1)$.
- 3. $Sp(B) = {\mu 1, \mu + 1; \mu \in Sp(A)}.$
- 4. Soit $\lambda \in Sp(B)$: $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ est dans $E_{\lambda}(B)$ ssi : $\begin{cases} A(X+Y) = (\lambda-1)(X+Y) \\ A(X-Y) = (\lambda+1)(X-Y) \end{cases}$. On obtient $E_{\lambda}(B) = \{ \begin{pmatrix} U+V \\ U-V \end{pmatrix}; (U,V) \in E_{\lambda-1}(A) \times E_{\lambda+1}(A) \}$.

Avec la convention : $E_{\mu}(A) = \{0\}$ quand μ n'est pas valeur propre.

- $5. \ Si\ A\ est\ diagonalisable:$
 - $\rightarrow P_B$ est scindé (question 2).
 - -> Il reste à vérifier l'égalité de la dimension des sous-espaces propres avec l'ordre de multiplicité :

.
$$\dim E_{\lambda}(B) = \dim E_{\lambda-1}(A) + \dim E_{\lambda+1}(A)$$
 (avec l'isomorphisme $(U, V) \to \begin{pmatrix} U + V \\ U - V \end{pmatrix}$.

. On tire l'ordre de multiplicité de la question 2 :

$$\alpha_{\lambda}(B) = \alpha_{\lambda+1}(A) + \alpha_{\lambda-1}(A).$$

6. Par récurrence : A_k est diagonalisable et $Sp(A_k) = \{k - 2i, i = 0...k\}$.

GAUFFRIAU Noé

Exercice 3. Soient $P \in \mathcal{M}_n(\mathbb{R})$ une matrice de projection et $f: M \in \mathcal{M}_n(\mathbb{R}) \mapsto PM - MP$.

- 1. L'endomorphisme f est-il diagonalisable?
- 2. Calculer la trace de f.

Exercice 4. Soient $(M,N) \in \mathcal{M}_{2n+1}(\mathbb{C})$. On suppose que MN=0 et que $M+M^T$ est inversible.

- 1. Montrer que M et N ont un vecteur propre commun.
- 2. Montrer que $N+N^T$ n'est pas inversible.

Solution **3.** On étudie l'endomorphisme canoniquement associé $\varphi : \mathcal{L}(\mathbb{R}^n) \to (\mathbb{R}^n)$, $u \mapsto p \circ u - u \circ p$ où p est le projecteur sur F parallèlement à G avec $\mathbb{R}^n = F \oplus G$. Dans une base adaptée, on se ramène à étudier l'endomorphisme

$$\widetilde{f}: M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \mapsto \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} - \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & B \\ -C & 0 \end{pmatrix}.$$

On a

$$\begin{cases} E_0(\widetilde{f}) = \text{vect}\,(E_{i,j}, (i,j) \in [\![1,r]\!]^2 \cup [\![n-r;n]\!]^2 \\ E_1(\widetilde{f}) = \text{vect}\,(E_{i,j}, (i,j) \in [\![n-r;n]\!] \times [\![1,r]\!] \\ E_{-1}(\widetilde{f}) = \text{vect}\,(E_{i,j}, (i,j) \in [\![1,r]\!] \times [\![n-r;n]\!] \end{cases}$$

Par dimension, l'endomorphisme est bien diagonalisable et sa trace qui vaut la somme des valeurs propres comptées avec mulitplicité vaut zéro.

Solution 4.

- Si la matrice N admet une valeur propre λ ≠ 0 et si X ∈ E_λ(N) \ {0}, alors la condition MN = 0 nous dit que X ∈ ker M. Donc M et N ont bien un vecteur propre commun.
 Si le spectre de N est réduit à {0}, alors N est nilpotente. Supposons N ≠ 0, alors il existe X ≠ 0 et k ≥ 2 tels que N^{k-1}X ≠ 0 et N^k(X) = 0. Par hypothèse MN^{k-1}X = 0 et donc N^{k-1}X est un vecteur propre commun à M et N. La dimension impaire n'intervient pas ici.
- 2. Remarquons que la dimension impaire devient ici indispensable comme le montre le cas n=2: si $M=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ et $N=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, alors MN=0 et les matrices $M+M^T=\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ et $N+N^T=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ sont inversibles.

Èn effet, on a $Im N \subset \ker M$. Si $rg N \geq n+1$, alors par thérème du rang, $rg M \leq n$, mais alors $rg M + rg M^T \leq 2n$, ce qui contredit $M + M^T$ inversible.

Donc dim ker $N = \dim \ker N^T \ge n+1$. La formule de Grassman nous dit que $\dim (\ker N \cap \ker N^T) \ge 1$ et donc $N + N^T$ n'est pas inversible.