K D O D U 3 / 11 / 2025

$R \not e duction$

Exercice 1 (Théorème des moments). Soit une matrice carrée $A \in \mathcal{M}_{nn}(\mathbb{C})$ de taille $n \geq 2$. Montrer que :

- 1. si $tr(A) = tr(A^2) = \cdots = tr(A^n) = 0$, alors la matrice A est nilpotente (et réciproquement?);
- 2. si $tr(A) = \cdots = tr(A^{n-1}) = 0$, alors la matrice A est nilpotente ou diagonalisable.

INDICATIONS: trigonalisation & déterminant de Vandermonde.

1. La matrice A est trigonalisable car elle appartient à $\mathcal{M}_{nn}(\mathbb{C})$: il existe donc une matrice P inversible et une matrice T triangulaire supérieure telle que $P^{-1}AP = T$. Les éléments diagonaux de T sont par ailleurs les valeurs propres de A car $\chi_A(X) = \chi_T(X) = \prod_{i=1}^n (X - t_{ii})$. On va montrer que toutes les valeurs propres sont nulles. Par l'absurde, supposons que la matrice A possède r valeurs propres non nulles $\lambda_1, \dots, \lambda_r$ distinctes deux à deux et notons m_1, \dots, m_r leurs $\begin{pmatrix} 0 & * & \cdots & * \\ & * & \ddots & * \\ & & * & \ddots & * \end{pmatrix}$

multiplicités respectives. De
$$T=\begin{pmatrix} 0 & * & \cdots & * \\ 0 & \lambda_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_r \end{pmatrix}$$
, on déduit que $T^k=\begin{pmatrix} 0 & * & \cdots & * \\ 0 & \lambda_1^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_r^k \end{pmatrix}$ pour tout $k\in\mathbb{N}$ où

(malfré les apparences) : d'une part chaque valeur propre non nulle λ_i apparaît m_i fois sur la diagonale, d'autre part il apparaît m_0 zéros sur la diagonale ssi 0 est une valeur propre. De $tr(A) = tr(A^2) = \cdots = tr(A^n) = 0$, on déduit que

 $\operatorname{tr}(T) = \operatorname{tr}(T^2) = \cdots = \operatorname{tr}(T^n) = 0$ (car la trace est un invariant de similitude) et donc que $\sum_{i=1}^r m_i \lambda_i^k = 0$ pour tout $k \in [\![1, n]\!]$ et, en particulier, pour tout $k \in [\![1, r]\!]$ car $r \leq n$. D'où le système de r équations

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{r-1} & \lambda_r \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{r-1}^2 & \lambda_r^2 \\ \vdots & & & \vdots \\ \lambda_1^{r-1} & \lambda_2^{r-1} & \cdots & \lambda_{r-1}^{r-1} & \lambda_r^{r-1} \\ \lambda_1^r & \lambda_2^r & \cdots & \lambda_{r-1}^r & \lambda_r^r \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_{r-1} \\ m_r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

Cette matrice carrée est inversible car son déterminant vaut $\lambda_1 \times \cdots \times \lambda_r \times V(\lambda_1, \cdots, \lambda_r)$ et est non nul car : d'une part, aucun des λ_i n'est nul, d'autre part le déterminant de Vandermonde $V(\lambda_1, \cdots, \lambda_r) = \prod_{1 \leq i < j \leq r} (\lambda_j - \lambda_i)$ est non nul car les complexes λ_i sont distincts deux à deux. Donc l'unique solution du système est $(m_1, \cdots, m_r) = (0, \cdots, 0)$. C'est absurde.

La matrice T est donc triangulaire supérieure stricte. Elle est donc nilpotente, et la matrice A aussi.

Réciproquement, si la matrice A est nilpotente, alors toutes ses valeurs propres sont nulles. (En effet X^n est un polynôme annulateur de la matrice A et le spectre est inclus dans l'ensemble des racines, donc $\operatorname{Sp}(A) \subset \{0\}$. Or $\operatorname{Sp}(A) \neq \emptyset$ car $A \in \mathcal{M}_{nn}(\mathbb{C})$, donc $\operatorname{Sp}(A) = \{0\}$.) De plus, A est trigonalisable car $A \in \mathcal{M}_{nn}(\mathbb{C})$, d'où A est semblable à une matrice triangulaire T et les élements diagonaux de T (et par suite aussi ceux de T^k pour tout $k \in \mathbb{N}^*$) sont tous nuls car ce sont les valeurs propres de A. D'où $\operatorname{tr}(T) = \operatorname{tr}(T^2) = \cdots = \operatorname{tr}(T^n) = 0$, donc $\operatorname{tr}(A) = \operatorname{tr}(A^n) = 0$.

2. Supposons que $tr(A) = \cdots = tr(A^{n-1}) = 0$.

On constate que, dans le raisonnement précédent, les r équations $\operatorname{tr}(A) = \operatorname{tr}(A^2) = \cdots = \operatorname{tr}(A^r) = 0$ ont suffi. La conclusion « A est nilpotente » reste donc valable si $r \leq n-1$. Si, au contraire, r=n, alors : la matrice A possède n valeurs propres distinctes deux à deux, or elle est de taille n, donc elle est diagonalisable.