K D O D U 5 / 11 / 2025

$R \not e duction$

Exercice 1. Soient $n \in \mathbb{N}^*$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $A \in \mathcal{M}_n(\mathbb{K})$ et 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que la matrice $B = \begin{pmatrix} 0_n & A \\ A & 0_n \end{pmatrix}$ est diagonalisable si, et seulement si, la matrice A l'est.
- 2. (a) Montrer que la matrice $C = \begin{pmatrix} I_n & I_n \\ A & A \end{pmatrix}$ est semblable à $\begin{pmatrix} 0_n & I_n \\ 0_n & A + I_n \end{pmatrix}$.
 - (b) Montrer que, si C est diagonalisable, alors A l'est.
 - (c) On suppose A diagonalisable. Montrer que C est diagonalisable si, et seulement si, $-1 \notin \operatorname{Sp}(A)$.
- 1. La matrice $P = \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix}$ est inversible (son inverse est $\frac{1}{2}P$) et $P^{-1}BP = \begin{pmatrix} A & 0_n \\ 0_n & -A \end{pmatrix} = B'$ est donc semblable à B.

Si A est diagonalisable, alors il existe $Q \in GL_n(\mathbb{K})$ telle que $Q^{-1}AQ = D$ est diagonale. La matrice $R = \begin{pmatrix} Q & 0_n \\ 0_n & Q \end{pmatrix}$ est alors inversible (son inverse est $\begin{pmatrix} Q^{-1} & 0_n \\ 0_n & Q^{-1} \end{pmatrix}$) et $R^{-1}B'R = \begin{pmatrix} D & 0_n \\ 0_n & D \end{pmatrix}$ est diagonale, ce qui prouve que la matrice B est diagonalisable.

Si B est diagonalisable, alors il en est de même de B'. Il existe donc un polynôme Π annulateur de B' et scindé à racines simples. Or $\Pi(B') = \begin{pmatrix} \Pi(A) & 0_n \\ 0_n & \Pi(-A) \end{pmatrix}$, d'où $\Pi(A) = 0_n$, d'où le polynôme Π est annulateur de A et est scindé à racines simples, donc A est diagonalisable.

- 2. (a) La matrice $P = \begin{pmatrix} I_n & 0_n \\ -I_n & I_n \end{pmatrix}$ est inversible (son inverse est $\begin{pmatrix} I_n & 0_n \\ I_n & I_n \end{pmatrix}$) et $P^{-1}CP = \begin{pmatrix} 0_n & I_n \\ 0_n & A+I_n \end{pmatrix} = C'$ est donc semblable à C.
 - (b) S la matrice C est diagonalisable, alors elle possède un polynôme annulateur Π scindé à racines simples. Or $\Pi(C') = \begin{pmatrix} 0_n & \star \\ 0_n & \Pi(A+I_n) \end{pmatrix}$. D'où $\Pi(A+I_n) = 0_n$. Le polynôme Π est ainsi annulateur de $A+I_n$ et est scindé à racines simples, d'où $A+I_n$ est diagonalisable, donc A l'est aussi.
 - (c) Il existe $Q \in GL_n(\mathbb{K})$ telle que $Q^{-1}AQ = D$ est diagonale car A est supposée diagonalisable. La matrice $R = \begin{pmatrix} I_n & 0_n \\ 0_n & Q \end{pmatrix}$ est alors inversible (son inverse est $\begin{pmatrix} I_n & 0_n \\ 0_n & Q^{-1} \end{pmatrix}$) et $R^{-1}C'R = \begin{pmatrix} 0_n & \star \\ 0_n & D + I_n \end{pmatrix}$. Le polynôme caractéristique de C est donc $\chi_C(X) = X^n \chi_{D+I_n}(X)$ et, par suite, $\operatorname{Sp}(C) = \{0\} \cup \operatorname{Sp}(D+I_n)$.

Si $-1 \in \operatorname{Sp}(A)$, alors $0 \in \operatorname{Sp}(D+I_n)$, d'où la multiplicité m_0 de la racine 0 dans la polynôme caractéristique $\chi_C(X)$ est supérieure à n+1. Or la dimension du sous-espace propre $E_0(C)$ est égale à n car $\operatorname{rg}(C) = n$. D'où $m_0 > \dim E_0(C)$, donc C n'est pas diagonalisable.

Si $-1 \notin \operatorname{Sp}(A)$, alors $0 \notin \operatorname{Sp}(D+I_n)$, d'où dim $E_0(C) + \sum_{\lambda \neq 0} E_{\lambda}(C) = n$, donc C est diagonalisable.