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Exercice 1 (Oral Petites Mines 2010). Quelle est la nature de l'intégrale f0+oo arctant (ﬁ—i) dx?

Notons f: z €]0, +oo[— m% In( 2+I). L’intégrale fo+°° f est impropre en 0 et en +oco. Elle converge si, et seulement si, les

14z
deux intégrales fol f et f1+°° f convergent.

La fonction f est continue sur |0,1] et a une limite finie en 0 (égale & In2 car arctanz ~ z), d’ol 'intégrale fOl f est

convergente car elle est faussement impropre en 0.

+
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Au voisinage de 400, on a In(2EZ) = In (11i) =In[(1+ %)(1 - % + o(%))] =1In(1+ % + o(i)) = % + o(%)7 donc

@)~ 5

car arctanz — . Or z% ne change pas de signe et ffLoo I% dx converge (d’apres le critere de Riemann en +00), ce qui

T— 400

montre que f1+°° f converge.

Finalement, l'intégrale f0+°° f converge.
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Exercice 2. 1. Montrer que l'intégrale I = /

2. Montrer que

1

—1 (2—22)V1 —2a?

dx converge.

I= I
—rj2 1+cos?0

3. Par le changement de variables u = tan 6, déterminer la valeur de I.

1. L’intégrale I est impropre en —1 et en +1. converge si, et seulement si, les deux intégrales

0 1 +1 1
I = —————dx et Iy = ———dx.
! [1 (2—22)V1— a2 2 [} (2 —22)V1 — 22

convergent.
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e Commengons par I'intégrale I, impropre en +1 : i G iTE , - VAVi-® Cp—

car % — let
rz—1"

1 1 1 i 1
s xj‘ 7 Or i e change pas de signe et 0

1
Vi—x

dx converge d’apres le critere de Riemann décalé en 1

D’ou 'intégrale I converge.

AUTRE METHODE : —+  ~ 1 1
2—22)y/1—22 4z 31— V2 /122

pour tout y € [0,1], [ ﬁ dx = [Arcsinz]§ = Arcsiny =
— y—1-

e Et, de méme, 'intégrale I; est convergente.

e Finalement, 'intégrale I converge.

qui ne change pas de signe. Or l'intégrale

1
0+ 11 dx converge car :

)

%. D’ou l'intétgrale I2 converge.




2. Le changement de variable 2 = sinf est de classe C! et strictement monotone, dx = cosfdf, 2 — 2 = 1 4 cos? 0 et
V1 — a2 = |cosf| = cos car cos 0 est positif sur I'intervalle d’intégration. Donc

I /+"/2 cos 0 df /"’7‘/2 do
~ Jonj2 (1+cos20)cosd —nj2 1+cos?8’

3. Le changement de variable u = tan@ est de classe C! et strictement monotone, du = (1 + tan?6)df = (1 + u?)df,

+oo 1 du too ]
o = L =L ,d’oﬁ[:/ — 7=/ du.
+cos 1+m 1+ ThuZ oo 14+ 14+ u? oo 24 u2

14+u?2
too 1 1 [t 1 1 +oo ™
0 — du= - . du=-[V2arct 2 ="
’ /_oo 2+u T 2 /_oo T+ (/22 2 [farc an(u/f)]—oo V2
Exercice 3. Soit o un réel et soit A la matrice définie par :
3—a a—-5 «
A= —a a-2 «a | eM3[R)
5 -5 =2
Pour quelle(s) valeur(s) de o la matrice A est-elle diagonalisable ?
Soit A € R :
A—3+a 5—a - ,_ A+2 5—« -
det(AI3 — A) = o A+2—a -« G=Gte A4+2 A+2—a -«
-5 5 2—A 0 5 A+2
, 1 5—« —«
Li=Lo—L —
Tt g0 A—3 0 :(,\+2)"\53 )\_?_2‘=(/\+2)2(/\73).
0 5 A+2
1< dim SEP(—

<2
1

YA - = 5 )
D’ott : Sp(A) = {—2;3} et {1 <dim SEP(3) <

La matrice A est diagonalisable ssi dim SEP(—2) + dim SEP(3) = dimR3, ssi dim SEP(—2) = 2. On cherche les vecteurs
propres associés a la valeur propre —2 :

T x .
Alyl==2y]| &= » v
2 p az=0
T 1 0
—sia=0,alors (%) <= z=y < |(y| =2 |1]+2[0], dou dimSEP(—2) =2, donc A est diagonalisable;
z 0 1
T 1

—si a #0, alors (%) < {j i 0 <~ |y| ==z(1], dotudimSEP(—2) =1, donc A n’est pas diagonalisable.
- z 0



