FEUILLE DE T.D. Nº 5

Suites de fonctions

Exercice 1. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie par

$$f_n(x) = x^n \ln(x)$$
 si $x \in]0,1]$ et $f_n(0) = 0$.

- 1. Montrer que la suite de fonctions (f_n) converge simplement sur [0,1]. Vers quelle fonction f?
- 2. Dresser le tableau des variations de chaque fonction f_n . La convergence de la suite (f_n) vers la fonction f est-elle uniforme sur [0,1]?

Exercice 2. Soit une constante $k \in \mathbb{R}$. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction

$$f_n: [0, +\infty[\to \mathbb{R}, x \mapsto n^k x e^{-nx}].$$

- 1. Montrer que la suite de fonctions (f_n) converge simplement : vers quelle fonction f?
- 2. Pour quelles valeurs du réel k la convergence est-elle uniforme sur \mathbb{R}_+ ?
- 3. Soit a > 0. Pour quelles valeurs du réel k la convergence est-elle uniforme sur $[a, +\infty]$?

Exercice 3. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction $f_n : [0, +\infty[\to \mathbb{R}, x \mapsto \frac{nx}{1+nx}]$. Montrer que la suite de fonctions (f_n) converge simplement vers une limite f et déterminer cette limite. Montrer que la convergence n'est pas uniforme sur \mathbb{R}_+ . Ni sur \mathbb{R}_+^* . Mais qu'elle l'est sur tout intervalle de la forme $[a, +\infty[$, où a > 0.

Exercice 4. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction

$$f_n : [0, +\infty[\to \mathbb{R}, x \mapsto Arctan\left(\frac{x+n}{1+nx}\right)].$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $[0,+\infty[$. Vers quelle fonction f?
- 2. Pour chaque $n \in \mathbb{N}^*N$, dresser le tableau des variations de la fonction $f f_n$.
- 3. La convergence de (f_n) vers f est-elle uniforme sur $[0, +\infty[$?

Exercice 5. Soit une suite de fonctions $f_n:]0,1[\to \mathbb{R}$ convergeant simplement sur]0,1[vers une fonction f. On suppose que:

- 1. chaque fonction f_n est croissante. Montrer que f l'est aussi.
- 2. chaque fonction f_n est bornée. Montrer que f ne l'est pas nécessairement. Et si la convergence est uniforme?
- 3. chaque fonction f_n est polynomiale. Montrer que f ne l'est pas nécessairement. Et si la convergence est uniforme?

Exercice 6. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie sur \mathbb{R} par

$$f_n(x) = \frac{2^n x}{1 + 2^n n x^2}.$$

- 1. Étudier la convergence simple sur \mathbb{R} de cette suite de fonctions.
- 2. Calculer $I_n = \int_0^1 f_n(t)dt$ et étudier $\lim_{n \to +\infty} I_n$.
- 3. Montrer que la suite (f_n) ne converge pas uniformément sur [0,1], de deux manières : en utilisant la question précédente et sans l'utiliser.
- 4. Soit a > 0. Montrer que la suite (f_n) converge uniformément sur $[a, +\infty[$.

Exercice 7. Soit la suite des réels $u_n = \int_0^{\pi/4} \tan^n(x) dx$.

- 1. Etudier les variations de la suite (u_n) . En déduire qu'elle converge.
- 2. Déterminer une relation entre u_{n-1} et u_{n+1} . En déduire la limite de (u_n) .
- 3. Retrouver ces résultats en utilisant le théorème de la convergence dominée.

Exercice 8 (convergence dominée).

1. Montrer que, pour chaque $n \in \mathbb{N}$,

$$v_n = \int_0^{+\infty} \frac{\mathrm{d}x}{x^n + \mathrm{e}^x}$$

est une intégrale convergente.

- 2. Montrer que la suite des fonctions $f_n: [0, +\infty[\to \mathbb{R}, x \mapsto \frac{1}{x^n + e^x}]$ converge simplement vers une fonction f continue par morceaux.
- 3. Montrer que la suite (v_n) est une suite convergente et calculer sa limite.

Exercice 9. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction $f_n : \mathbb{R}^+ \to \mathbb{R}$ définie par

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}.$$

1. Montrer que, pour tout $t \in \mathbb{R}^+$,

$$t - \frac{t^2}{2} \leqslant \ln(1+t) \leqslant t.$$

2. Montrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f et que :

$$\forall x \in \mathbb{R}^+, f_n(x) \geqslant f(x).$$

- 3. Soit un réel A > 0.
 - (a) Montrer que, pour tout $x \in [0, A]$, $|f_n(x) f(x)| \le \exp\left(\frac{A^2}{2n}\right) 1$.
 - (b) La suite de fonctions (f_n) converge-t-elle uniformément sur [0,A]?
- 4. Montrer que chaque fonction f_n est décroissante.
- 5. Soit $\varepsilon > 0$. Montrer qu'il existe $N \in \mathbb{N}^*$ et $A \in \mathbb{R}^+$ tels que :

$$\forall n \geq N, \ \forall x \geq A, \quad |f_n(x) - f(x)| \leq \varepsilon.$$

6. La suite de fonctions (f_n) converge-t-elle uniformément sur \mathbb{R}^+ ?

Exercice 10. Soit une fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue telle que l'intégrale généralisée $\int_0^{+\infty} f(t) dt$ converge.

- 1. La fonction f a-t-elle nécessairement une limite en $+\infty$?
- 2. Montrer que, si la limite existe, alors elle est nécessairement nulle.
- 3. Montrer que, si f est uniformément continue, alors $\lim_{x \to +\infty} f(x) = 0$.